首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Breynia retusa (Dennst.) Alston (also known as Cup Saucer plant) is a food plant with wide applications in traditional medicine, particularly in Ayurveda. Extracts obtained with four solvents (dichloromethane, methanol, ethyl acetate and water), from three plant parts, (fruit, leaf and bark) were obtained. Extracts were tested for total phenolic, flavonoid content and antioxidant activities using a battery of assays including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), cupric reducing antioxidant capacity (CUPRAC), total antioxidant capacity (TAC) (phosphomolybdenum) and metal chelating. Enzyme inhibitory effects were investigated using acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, α-amylase and α-glucosidase as target enzymes. Results showed that the methanolic bark extract exhibited significant radical scavenging activity (DPPH: 202.09 ± 0.15; ABTS: 490.12 ± 0.18 mg Trolox equivalent (TE)/g), reducing potential (FRAP: 325.86 ± 4.36: CUPRAC: 661.82 ± 0.40 mg TE/g) and possessed the highest TAC (3.33 ± 0.13 mmol TE/g). The methanolic extracts were subjected to LC-DAD-MSn and NMR analysis. A two-column LC method was developed to separate constituents, allowing to identify and quantify forty-four and fifteen constituents in bark and fruits, respectively. Main compound in bark was epicatechin-3-O-sulphate and isolation of compound was performed to confirm its identity. Bark extract contained catechins, procyanidins, gallic acid derivatives and the sulfur containing spiroketal named breynins. Aerial parts mostly contained flavonoid glycosides. Considering the bioassays, the methanolic bark extract resulted a potent tyrosinase (152.79 ± 0.27 mg kojic acid equivalent/g), α-amylase (0.99 ± 0.01 mmol acarbose equivalent ACAE/g) and α-glucosidase (2.16 ± 0.01 mmol ACAE/g) inhibitor. In conclusion, methanol is able to extract the efficiently the phytoconstituents of B. retusa and the bark is the most valuable source of compounds.  相似文献   

2.
Decoctions (leaves and roots) of Bruguiera gymnorhiza (L.) Lam. are traditionally used against diabetes in many countries, including Mauritius. This study endeavoured to evaluate the inhibitory potential of leaves, roots, twigs and fruits extracts (decoction and maceration) of B. gymnorhiza against key enzymes relevant to diabetes. Considering complications related to diabetes, other clinical enzymes, namely, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, elastase and pancreatic lipase, were used. Identification of compounds was carried out using ultra-high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS). Antioxidant capacities were assessed using DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, metal chelating. The relationship between mode of extraction, plant parts and biological activities was determined using multivariate analysis. Macerated fruits, rich in phytochemicals (phenolic, flavanol, tannin, and triterpenoid), exhibited substantially high antioxidant capacities related to radical scavenging (DPPH: 547.75 ± 10.99 and ABTS: 439.59 ± 19.13 mg TE/g, respectively) and reducing potential (CUPRAC: 956.04 ± 11.90 and FRAP: 577.26 ± 4.55 mg TE/g, respectively). Additionally, the same extract significantly depressed AChE and BChE (3.75 ± 0.03 and 2.19 ± 0.13 mg GALAE/g, respectively), tyrosinase (147.01 ± 0.78 mg KAE/g), elastase (3.14 ± 0.08 mg OE/g) and amylase (1.22 ± 0.01 mmol ACAE/g) enzymatic activities. Phytochemical results confirmed the presence of 119 compounds in all maceration and 163 compounds in all decoction samples. The screening also revealed important compounds in the extracts, namely, quinic acid, brugierol, bruguierol A, epigallocatechin, chlorogenic acid, to name a few. Multivariate analysis reported that the plant parts of B. gymnorhiza greatly influenced the observed biological activities in contrast to the types of extraction methods employed. Docking calculations have supported the findings of the experimental part through the high binding affinity and strong interactions of some compounds against tyrosinase, AChE, BChE and elastase enzymes. The decocted root and leaf of B. gymnorhiza showed low to moderate antidiabetic activity, thereby partially supporting its traditional uses in the management of diabetes. However, the fruit, the most active organ, can be used as a diet supplement to reduce the risk of diabetes complications after evaluating its cytotoxic effects.  相似文献   

3.
The effect-directed detection (EDD) of Schisandra rubriflora fruit and leaves extracts was performed to assess their pharmacological properties. The EDD comprised TLC—direct bioautography against Bacillus subtilis, a DPPH assay, as well as α-glucosidase, lipase, tyrosinase, and acetylcholinesterase (AChE) inhibition assays. The leaf extracts showed stronger antioxidant activity than the fruit extract as well as inhibition of tyrosinase and lipase. The fruit extract was found to be extremely active against B. subtilis and to inhibit α-glucosidase and AChE slightly more than the leaf extracts. UHPLC–MS/MS analysis was carried out for the bioactive fractions and pointed to the possible anti-dementia properties of the dibenzocyclooctadiene lignans found in the upper TLC fractions. Gomisin N (518 mg/100 g DW), schisanhenol (454 mg/100 g DW), gomisin G (197 mg/100 g DW), schisandrin A (167 mg/100 g DW), and gomisin O (150 mg/100 g DW) were the quantitatively dominant compounds in the fruit extract. In total, twenty-one lignans were found in the bioactive fractions.  相似文献   

4.
The antioxidant and enzyme inhibitory potential of fifteen cycloartane-type triterpenes’ potentials were investigated using different assays. In the phosphomolybdenum method, cycloalpioside D (6) (4.05 mmol TEs/g) showed the highest activity. In 1,1-diphenyl-2-picrylhydrazyl (DPPH*) radical and 2,2′-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) cation radical scavenging assays, cycloorbicoside A-7-monoacetate (2) (5.03 mg TE/g) and cycloorbicoside B (10) (10.60 mg TE/g) displayed the highest activities, respectively. Oleanolic acid (14) (51.45 mg TE/g) and 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol 7-monoacetate (4) (13.25 mg TE/g) revealed the highest reducing power in cupric ion-reducing activity (CUPRAC) and ferric-reducing antioxidant power (FRAP) assays, respectively. In metal-chelating activity on ferrous ions, compound 2 displayed the highest activity estimated by 41.00 mg EDTAE/g (EDTA equivalents/g). The tested triterpenes showed promising AChE and BChE inhibitory potential with 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol 2′,3′,4′,7-tetraacetate (3), exhibiting the highest inhibitory activity as estimated from 5.64 and 5.19 mg GALAE/g (galantamine equivalent/g), respectively. Compound 2 displayed the most potent tyrosinase inhibitory activity (113.24 mg KAE/g (mg kojic acid equivalent/g)). Regarding α-amylase and α-glucosidase inhibition, 3-O-β-d-xylopyranoside-(23R,24S)-16β,23;16α,24-diepoxycycloart-25(26)-en-3β,7β-diol (5) (0.55 mmol ACAE/g) and compound 3 (25.18 mmol ACAE/g) exerted the highest activities, respectively. In silico studies focused on compounds 2, 6, and 7 as inhibitors of tyrosinase revealed that compound 2 displayed a good ranking score (−7.069 kcal/mole) and also that the ΔG free-binding energy was the highest among the three selected compounds. From the ADMET/TOPKAT prediction, it can be concluded that compounds 4 and 5 displayed the best pharmacokinetic and pharmacodynamic behavior, with considerable activity in most of the examined assays.  相似文献   

5.
In the study, two novel compounds along with two new compounds were isolated from Grewia optiva. The novel compounds have never been reported in any plant source, whereas the new compounds are reported for the first time from the studied plant. The four compounds were characterized as: 5,5,7,7,11,13-hexamethyl-2-(5-methylhexyl)icosahydro-1H-cyclopenta[a]chrysen-9-ol (IX), docosanoic acid (X), methanetriol mano formate (XI) and 2,2’-(1,4-phenylene)bis(3-methylbutanoic acid (XII). The anticholinesterase, antidiabetic, and antioxidant potentials of these compounds were determined using standard protocols. All the isolated compounds exhibited a moderate-to-good degree of activity against acetylcholinesterases (AChE) and butyrylcholinesterase (BChE). However, compound XII was particularly effective with IC50 of 55 μg/mL (against AChE) and 60 μg/mL (against BChE), and this inhibitory activity is supported by in silico docking studies. The same compound was also effective against DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) radicals with IC50 values of 60 and 62 μg/mL, respectively. The compound also significantly inhibited the activities of α-amylase and α-glucosidase in vitro. The IC50 values for inhibition of the two enzymes were recorded as 90 and 92 μg/mL, respectively. The in vitro potentials of compound XII to treat Alzheimer’s disease (in terms of AchE and BChE inhibition), diabetes (in terms of α-amylase and α-glucosidase inhibition), and oxidative stress (in terms of free radical scavenging) suggest further in vivo investigations of the compound for assessing its efficacy, safety profile, and other parameters to proclaim the compound as a potential drug candidate.  相似文献   

6.
Helichrysum arenarium (L.) Moench (sandy everlasting) is the only species from genus Helichrysum Mill that grows spontaneously in Lithuania. The chemical composition of the essential oils (EOs) from inflorescences and leaves of H. arenarium wild plants was analysed by GC-MS. Palmitic (≤23.8%), myristic (≤14.9%) and lauric (6.1%) acids, n-nonanal (10.4%), and trans-β-caryophyllene (≤6.5%) were the major constituents in the EOs. For comparison, the main components in EO from flowers (commercial herb material) of H. italicum were γ-curcumene (21.5%), β-selinene (13.6%), α-selinene (8.1%), β-eudesmol (8.3%), and α-pinene (6.5%). Composition of H. arenarium methanolic extracts was investigated by HPLC-DAD-TOF. The main compounds were the following: luteolin-7-O-glucoside, naringenin and its glucoside, apigenin, chlorogenic acid, arenol, and arzanol. Antioxidant activity of EOs and extracts was tested by DPPH and ABTS●+ assays. Sandy everlasting extracts exhibited significantly higher radical scavenging activities (for leaves 11.18 to 19.13 and for inflorescences 1.96 to 6.13 mmol/L TROLOX equivalent) compared to those of all tested EOs (0.25 to 0.46 mmol/L TROLOX equivalent). Antioxidant activity, assayed electrochemically by cyclic and square wave voltammetry correlated with total polyphenolic content in extracts and radical scavenging properties of EOs and extracts. The toxic activity of EOs of both Helichrysum species was evaluated using a brine shrimp (Artemia salina) bioassay. H. italicum inflorescence EO was found to be toxic (LC50 = 15.99 µg/mL) as well as that of H. arenarium (LC50 ≤ 23.42 µg/mL) oils.  相似文献   

7.
The study aims to determine the secondary metabolites of Hypericum androsaemum L. extracts by liquid chromatography-high resolution mass spectrometry (LC-HRMS), and investigate the antioxidant and cytotoxic activities of the plant. Cytotoxic activity was evaluated by MTT assay, and apoptosis induction abilities on human prostate adenocarcinoma (PC-3), and hepatocellular carcinoma (Hep G2) cell lines. Accordingly, major secondary metabolites were found as hederagenin (762 ± 70.10 μg/g) in the leaves dichloromethane (LD), herniarin (167 ± 1.50 μg/g) in fruit dichloromethane (FD), (-)-epicatechin (6538 ± 235.36 μg/g) in the leaves methanol (LM), (-)-epigallocatechin gallate (758 ± 20.46 μg/g) in the fruit methanol (FM), and caffeic acid (370 ± 8.88 μg/g) in the fruit water (FW), and (3313 ± 79.51 μg/g) in the leaves water (LW) extracts. LM exerted strong antioxidant activity in DPPH free (IC50 10.94 ± 0.08 μg/mL), and ABTS cation radicals scavenging (IC50 9.09 ± 0.05 μg/mL) activities. FM exhibited cytotoxic activity with IC50 values of 73.23 ± 3.06 µg/mL and 31.64 ± 2.75 µg/mL on PC-3 and Hep G2 cell lines, respectively. Being the richest extract in terms of quillaic acid (630 ± 18.9 μg/g), which is a well-known cytotoxic triterpenoid with proven apoptosis induction ability on different cells, FM extract showed apoptosis induction activity with 64.75% on PC-3 cells at 50 μg/mL concentration. The study provides promising results about the potential of Hypericum androsaemum on cancer prevention.  相似文献   

8.
The current study was intended to explore the phytochemical profiling and therapeutic activities of Putranjiva roxburghii Wall. Crude extracts of different plant parts were subjected to the determination of antioxidant, antimicrobial, antidiabetic, cytotoxic, and protein kinase inhibitory potential by using solvents of varying polarity ranges. Maximum phenolic content was notified in distilled water extracts of the stem (DW-S) and leaf (DW-L) while the highest flavonoid content was obtained in ethyl acetate leaf (EA-L) extract. HPLC-DAD analysis confirmed the presence of various polyphenols, quantified in the range of 0.02 ± 0.36 to 2.05 ± 0.18 μg/mg extract. Maximum DPPH scavenging activity was expressed by methanolic extract of the stem (MeOH-S). The highest antioxidant capacity and reducing power was shown by MeOH-S and leaf methanolic extract (MeOH-L), respectively. Proficient antibacterial activity was shown by EA-L extract against Bacillus subtilis and Escherichia coli. Remarkable α-amylase and α-glucosidase inhibition potential was expressed by ethyl acetate fruit (EA-F) and n-Hexane leaf (nH-L) extracts, respectively. In case of brine shrimp lethality assay, 41.67% of the extracts (LC50 < 50 µg/mL) were considered as extremely cytotoxic. The test extracts also showed mild antifungal and protein kinase inhibition activities. The present study explores the therapeutic potential of P. roxburghii and calls for subsequent studies to isolate new bioactive leads through bioactivity-guided isolation.  相似文献   

9.
Ajuga bracteosa Wall. ex Benth. is an endangered medicinal herb traditionally used against different ailments. The present study aimed to create new insight into the fundamental mechanisms of genetic transformation and the biological activities of this plant. We transformed the A. bracteosa plant with rol genes of Agrobacterium rhizogenes and raised the regenerants from the hairy roots. These transgenic regenerants were screened for in vitro antioxidant activities, a range of in vivo assays, elemental analysis, polyphenol content, and different phytochemicals found through HPLC. Among 18 polyphenolic standards, kaempferol was most abundant in all transgenic lines. Furthermore, transgenic line 3 (ABRL3) showed maximum phenolics and flavonoids content among all tested plant extracts. ABRL3 also demonstrated the highest total antioxidant capacity (8.16 ± 1 μg AAE/mg), total reducing power, (6.60 ± 1.17 μg AAE/mg), DPPH activity (IC50 = 59.5 ± 0.8 μg/mL), hydroxyl ion scavenging (IC50 = 122.5 ± 0.90 μg/mL), and iron-chelating power (IC50 = 154.8 ± 2 μg/mL). Moreover, transformed plant extracts produced significant analgesic, anti-inflammatory, anticoagulant, and antidepressant activities in BALB/c mice models. In conclusion, transgenic regenerants of A. bracteosa pose better antioxidant and pharmacological properties under the effect of rol genes as compared to wild-type plants.  相似文献   

10.
Cholinesterase (ChE) inhibition is an important treatment strategy for Alzheimer’s disease (AD) as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are involved in the pathology of AD. In the current work, ChE inhibitory potential of twenty-four natural products from different chemical classes (i.e., diosgenin, hecogenin, rockogenin, smilagenin, tigogenin, astrasieversianins II and X, astragalosides I, IV, and VI, cyclocanthosides E and G, macrophyllosaponins A-D, kokusaginin, lamiide, forsythoside B, verbascoside, alyssonoside, ipolamide, methyl rosmarinate, and luteolin-7-O-glucuronide) was examined using ELISA microtiter assay. Among them, only smilagenin and kokusaginine displayed inhibitory action against AChE (IC50 = 43.29 ± 1.38 and 70.24 ± 2.87 µg/mL, respectively). BChE was inhibited by only methyl rosmarinate and kokusaginine (IC50 = 41.46 ± 2.83 and 61.40 ± 3.67 µg/mL, respectively). IC50 values for galantamine as the reference drug were 1.33 ± 0.11 µg/mL for AChE and 52.31 ± 3.04 µg/mL for BChE. Molecular docking experiments showed that the orientation of smilagenin and kokusaginine was mainly driven by the interactions with the peripheral anionic site (PAS) comprising residues of hAChE, while kokusaginine and methyl rosmarinate were able to access deeper into the active gorge in hBChE. Our data indicate that similagenin, kokusaginine, and methyl rosmarinate could be hit compounds for designing novel anti-Alzheimer agents.  相似文献   

11.
Solubility of phytoconstituents depends on the polarity of the extraction medium used, which might result in the different pharmacological responses of extracts. In line with this, ethnomedicinally important food plant (i.e., Caralluma tuberculata extracts) have been made in fourteen distinct solvent systems that were then analyzed phytochemically via total phenolic amount estimation, total flavonoid amount estimation, and HPLC detection and quantification of the selected polyphenols. Test extracts were then subjected to a battery of in vitro assays i.e., antioxidants (DDPH scavenging, antioxidant capacity, and reducing power estimation), antimicrobial (antibacterial, antifungal, and antileishmanial), cytotoxic (brine shrimps, THP-1 human leukemia cell lines and normal lymphocytes), and protein kinase inhibition assays. Maximum phenolic and flavonoid contents were computed in distilled water–acetone and acetone extracts (i.e., 16 ± 1 μg/mg extract and 8 ± 0.4/mg extract, respectively). HPLC-DAD quantified rutin (0.58 µg/mg extract) and gallic acid (0.4 µg/mg extract) in methanol–ethyl acetate and methanol extracts, respectively. Water–acetone extract exhibited the highest DPPH scavenging of 36 ± 1%. Total reducing potential of 76.0 ± 1 μg/mg extract was shown by ethanol chloroform while maximum total antioxidant capacity was depicted by the acetone extract (92.21 ± 0.70 μg/mg extract). Maximal antifungal effect against Mucor sp., antileishmanial, brine shrimp cytotoxicity, THP-1 cell line cytotoxicity, and protein kinase inhibitory activities were shown by ethyl acetate-methanol (MIC: 50 µg/disc), n-hexane (IC50: 120.8 ± 3.7 µg/mL), ethyl acetate (LD50: 29.94 ± 1.6 µg/mL), distilled water–acetone (IC50: 118 ± 3.4 µg/mL) and methanol–chloroform (ZOI: 19 ± 1 mm) extracts, respectively. Our findings show the dependency of phytochemicals and bioactivities on the polarity of the extraction solvent and our preliminary screening suggests the C. tuberculata extract formulations to be tested and used in different ailments, however, detailed studies remain necessary for corroboration with our results.  相似文献   

12.
Salvia officinalis L. (sage) is one of the most appreciated plants for its plethora of biologically active compounds. The objective of our research was a comparative study, in the Mediterranean context, of chemical composition, anticholinesterases, and antioxidant properties of essential oils (EOs) from sage collected in three areas (S1–S3) of Southern Italy. EOs were extracted by hydrodistillation and analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory properties were investigated by employing Ellman’s method. Four in vitro assays, namely, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric-reducing ability power (FRAP), and β-carotene bleaching tests, were used to study the antioxidant effects. Camphor (16.16–18.92%), 1,8-cineole (8.80–9.86%), β-pinene (3.08–9.14%), camphene (6.27–8.08%), and α-thujone (1.17–9.26%) are identified as the most abundant constituents. However, the content of these constituents varied depending on environmental factors and pedoclimatic conditions. Principal component analysis (PCA) was performed. Based on Relative Antioxidant Capacity Index (RACI), S2 essential oil exhibited the highest radical potential with an IC50 value of 20.64 μg/mL in ABTS test and presented the highest protection of lipid peroxidation with IC50 values of 38.06 and 46.32 μg/mL after 30 and 60 min of incubation, respectively. The most promising inhibitory activity against BChE was found for S3 sample (IC50 of 33.13 μg/mL).  相似文献   

13.
The aim of this study was to investigate the chemical composition, antioxidant and enzyme inhibitory activities of methanol (MeOH) extracts from Onosma bourgaei (Boiss.) and O. trachytricha (Boiss.). In addition, the interactions between phytochemicals found in extracts in high amounts and the target enzymes in question were revealed at the molecular scale by performing in silico molecular docking simulations. While the total amount of flavonoid compounds was higher in O. bourgaei, O. trachytricha was richer in phenolics. Chromatographic analysis showed that the major compounds of the extracts were luteolin 7-glucoside, apigenin 7-glucoside and rosmarinic acid. With the exception of the ferrous ion chelating assay, O. trachytricha exhibited higher antioxidant activity than O. bourgaei. O. bourgaei exhibited also slightly higher activity on digestive enzymes. The inhibitory activities of the Onosma species on tyrosinase were almost equal. In addition, the inhibitory activities of the extracts on acetylcholinesterase (AChE) were stronger than the activity on butyrylcholinesterase (BChE). Molecular docking simulations revealed that luteolin 7-glucoside and apigenin 7-glucoside have particularly strong binding affinities against ChEs, tyrosinase, α-amylase and α-glucosidase when compared with co-crystallized inhibitors. Therefore, it was concluded that the compounds in question could act as effective inhibitors on cholinesterases, tyrosinase and digestive enzymes.  相似文献   

14.
In this study six unsymmetrical thiourea derivatives, 1-isobutyl-3-cyclohexylthiourea (1), 1-tert-butyl-3-cyclohexylthiourea (2), 1-(3-chlorophenyl)-3-cyclohexylthiourea (3), 1-(1,1-dibutyl)-3-phenylthiourea (4), 1-(2-chlorophenyl)-3-phenylthiourea (5) and 1-(4-chlorophenyl)-3-phenylthiourea (6) were obtained in the laboratory under aerobic conditions. Compounds 3 and 4 are crystalline and their structure was determined for their single crystal. Compounds 3 is monoclinic system with space group P21/n while compound 4 is trigonal, space group R3:H. Compounds (1–6) were tested for their anti-cholinesterase activity against acetylcholinesterase and butyrylcholinesterase (hereafter abbreviated as, AChE and BChE, respectively). Potentials (all compounds) as sensing probes for determination of deadly toxic metal (mercury) using spectrofluorimetric technique were also investigated. Compound 3 exhibited better enzyme inhibition IC50 values of 50, and 60 µg/mL against AChE and BChE with docking score of −10.01, and −8.04 kJ/mol, respectively. The compound also showed moderate sensitivity during fluorescence studies.  相似文献   

15.
Alkaloids of the Lycopodiaceae family are of great interest to researchers due to their numerous properties and wide applications in medicine. They play a very important role mainly due to their potent antioxidant, antidepressant effects and a reversible ability to inhibit acetylcholinesterase (AChE) enzyme activity. This property is of immense importance due to the growing problem of an increasing number of patients with neurodegenerative diseases in developed countries and a lack of effective and efficient treatment for them. Numerous studies have shown that Lycopodiaceae alkaloids are a rich source of AChE inhibitors. In the obtaining of new therapeutic phytochemicals from plant material, the extraction process and its efficiency is crucial. Therefore, the aim of this work was to optimize the conditions of modern PLE to obtain bioactive alkaloids from two Lycopodium species: L. clavatum L. and L. annotinum L. Five different solvents of different polarity were used for prepared plant extracts in order to compare the alkaloid content in and thereby effectiveness of the entire extraction. PLE parameters were used based on multiple studies conducted that gave the highest alkaloids recovery. Crude extracts were purified using solid-phase extraction (SPE) on Oasis HLB cartridge and examined by HPLC/ESI-QTOF–MS of the highly abundant alkaloids. To the best of our knowledge, this is the first time such high recoveries have been obtained for known Lycopodiaceae alkaloids. The best extraction results of alkaloid-lycopodine were detected in the dichloromethane extract from L. clavatum, where the yield exceeded 45%. The high recovery of annotinine above 40% presented in L. annotinum was noticed in dichloromethane and ethyl acetate extracts. Moreover, chromatograms were obtained with all isolated alkaloids and the best separation and quality of the bands in methanolic extracts. Interestingly, no alkaloid amounts were detected in cyclohexane extracts belonging to the non-polar solvent. These results could be helpful for understanding and optimizing the best conditions for isolating potent AChE inhibitors.  相似文献   

16.
The aim of the present study was to investigate the changes in the content of phytochemical compounds and in vitro antioxidant, antibacterial, and anti-inflammatory activities of Teucrium polium L. aerial parts and root methanolic extracts at different phenological stages (vegetative, flowering, and seeding). The T. polium extracts were analyzed using gas chromatography–mass spectrometry (GC-MS), and their antioxidant properties were tested with the 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), ferrous ions (Fe2+), and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. Forty-nine compounds were identified with the majority of germacrene D, t-cadinol, β-pinene, carvacrol, bicyclogermacrene, α-pinene, and limonene. The results show that the extracts significantly differ between different phenological stages of the plant material used in terms of the phytochemical composition (total phenolic compounds, total flavonoids, total alkaloids, and total saponin contents) and bioactivities (antioxidant, antibacterial, and anti-inflammatory) (p < 0.05). The highest total contents of phenolics (72.4 ± 2.5 mg gallic acid equivalent (GAE)/g dry weight), flavonoids (36.2 ± 3.1 mg quercetin equivalent (QE)/g dry weight), alkaloids (105.7 ± 2.8 mg atropine equivalent (AE)/g dry weight), and saponins (653 ± 6.2 mg escin equivalent (EE)/g dry weight), as well as antioxidant, antibacterial, and anti-inflammatory activities, were measured for the extract of the aerial parts obtained at the flowering stage. The minimum inhibitory concentration (MIC) values for the extracts were varied within 9.4–300 µg/mL, while the minimum bactericidal concentration (MBC) values were varied within 18.75–600 µg/mL. In addition, they were more active on Gram-positive bacteria than Gram-negative bacteria. The data of this work confirm that the T. polium extracts have significant biological activity and hence can be used in the pharmaceutical industry, clinical applications, and medical research, as well as cosmetic and food industries.  相似文献   

17.
In this study, methanol extracts (MEs) and essential oil (EO) of Angelica purpurascens (Avé-Lall.) Gill obtained from different parts (root, stem, leaf, and seed) were evaluated in terms of antioxidant activity, total phenolics, compositions of phenolic compound, and essential oil with the methods of 2,2-azino-bis(3ethylbenzo-thiazoline-6-sulfonic acid (ABTS•+), 2,2-diphenyl-1-picrylhydrazil (DPPH•) radical scavenging activities, and ferric reducing/antioxidant power (FRAP), the Folin–Ciocalteu, liquid chromatography−tandem mass spectrometry (LC−MS/MS), and gas chromatography-mass spectrometry (GC−MS), respectively. The root extract of A. purpurascens exhibited the highest ABTS•+, DPPH•, and FRAP activities (IC50: 0.05 ± 0.0001 mg/mL, IC50: 0.06 ± 0.002 mg/mL, 821.04 ± 15.96 µM TEAC (Trolox equivalent antioxidant capacity), respectively). Moreover, EO of A. purpurascens root displayed DPPH• scavenging activity (IC50: 2.95 ± 0.084 mg/mL). The root extract had the highest total phenolic content (438.75 ± 16.39 GAE (gallic acid equivalent), µg/mL)). Twenty compounds were identified by LC−MS/MS. The most abundant phenolics were ferulic acid (244.39 ± 15.64 μg/g extract), benzoic acid (138.18 ± 8.84 μg/g extract), oleuropein (78.04 ± 4.99 μg/g extract), and rutin (31.21 ± 2.00 μg/g extract) in seed, stem, root, and leaf extracts, respectively. According to the GC−MS analysis, the major components were determined as α-bisabolol (22.93%), cubebol (14.39%), α-pinene (11.63%), and α-limonene (9.41%) among 29 compounds. Consequently, the MEs and EO of A. purpurascens can be used as a natural antioxidant source.  相似文献   

18.
New hybrids of 4-amino-2,3-polymethylenequinoline with different sizes of the aliphatic ring linked to butylated hydroxytoluene (BHT) by enaminoalkyl (7) or aminoalkyl (8) spacers were synthesized as potential multifunctional agents for Alzheimer’s disease (AD) treatment. All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. Lead compound 8c, 2,6-di-tert-butyl-4-{[2-(7,8,9,10- tetrahydro-6H-cyclohepta[b]quinolin-11-ylamino)-ethylimino]-methyl}-phenol exhibited an IC50(AChE) = 1.90 ± 0.16 µM, IC50(BChE) = 0.084 ± 0.008 µM, and 13.6 ± 1.2% propidium displacement at 20 μM. Compounds possessed low activity against carboxylesterase, indicating likely absence of clinically unwanted drug-drug interactions. Kinetics were consistent with mixed-type reversible inhibition of both cholinesterases. Docking indicated binding to catalytic and peripheral AChE sites; peripheral site binding along with propidium displacement suggest the potential of the hybrids to block AChE-induced β-amyloid aggregation, a disease-modifying effect. Compounds demonstrated high antioxidant activity in ABTS and FRAP assays as well as inhibition of luminol chemiluminescence and lipid peroxidation in mouse brain homogenates. Conjugates 8 with amine-containing spacers were better antioxidants than those with enamine spacers 7. Computational ADMET profiles for all compounds predicted good blood-brain barrier distribution (permeability), good intestinal absorption, and medium cardiac toxicity risk. Overall, based on their favorable pharmacological and ADMET profiles, conjugates 8 appear promising as candidates for AD therapeutics.  相似文献   

19.
Kaempferol is a well-known antioxidant found in many plants and plant-based foods. In plants, kaempferol is present mainly in the form of glycoside derivatives. In this work, we focused on determining the effect of kaempferol and its glycoside derivatives on the expression level of genes related to the reduction of oxidative stress—NFE2L2, NQO1, SOD1, SOD2, and HO-1; the enzymatic activity of superoxide dismutases; and the level of glutathione. We used HL-60 acute promyelocytic leukemia cells, which were incubated with the anticancer drug etoposide and kaempferol or one of its three glycoside derivatives isolated from the aerial parts of Lens culinaris Medik.—kaempferol 3-O-[(6-O-E-caffeoyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P2), kaempferol 3-O-[(6-O-E-p-coumaroyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P5), and kaempferol 3-O-[(6-O-E-feruloyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P7). We showed that none of the tested compounds affected NFE2L2 gene expression. Co-incubation with etoposide (1 µM) and kaempferol (10 and 50 µg/mL) leads to an increase in the expression of the HO-1 (9.49 and 9.33-fold at 10 µg/mL and 50 µg/mL, respectively), SOD1 (1.68-fold at 10 µg/mL), SOD2 (1.72-fold at 10–50 µg/mL), and NQO1 (1.84-fold at 50 µg/mL) genes in comparison to cells treated only with etoposide. The effect of kaempferol derivatives on gene expression differs depending on the derivative. All tested polyphenols increased the SOD activity in cells co-incubated with etoposide. We observed that the co-incubation of HL-60 cells with etoposide and kaempferol or derivative P7 increases the level of total glutathione in these cells. Taken together, our observations suggest that the antioxidant activity of kaempferol is related to the activation of antioxidant genes and proteins. Moreover, we observed that glycoside derivatives can have a different effect on the antioxidant cellular systems than kaempferol.  相似文献   

20.
Polygala species are frequently used worldwide in the treatment of various diseases, such as inflammatory and autoimmune disorders as well as metabolic and neurodegenerative diseases, due to the large number of secondary metabolites they contain. The present study was performed on Polygala inexpectata, which is a narrow endemic species for the flora of Turkey, and resulted in the isolation of nine known compounds, 6,3′-disinapoyl-sucrose (1), 6-O-sinapoyl,3′-O-trimethoxy-cinnamoyl-sucrose (tenuifoliside C) (2), 3′-O-(O-methyl-feruloyl)-sucrose (3), 3′-O-(sinapoyl)-sucrose (4), 3′-O-trimethoxy-cinnamoyl-sucrose (glomeratose) (5), 3′-O-feruloyl-sucrose (sibiricose A5) (6), sinapyl alcohol 4-O-glucoside (syringin or eleutheroside B) (7), liriodendrin (8), and 7,4′-di-O-methylquercetin-3-O-β-rutinoside (ombuin 3-O-rutinoside or ombuoside) (9). The structures of the compounds were determined by the spectroscopic methods including 1D-NMR (1H NMR, 13C NMR, DEPT-135), 2D-NMR (COSY, NOESY, HSQC, HMBC), and HRMS. The isolated compounds were shown in an in silico setting to be accommodated well within the inhibitor-binding pockets of myeloperoxidase and inducible nitric oxide synthase and anchored mainly through hydrogen-bonding interactions and π-effects. It is therefore plausible to suggest that the previously established anti-inflammatory properties of some Polygala-derived phytochemicals may be due, in part, to the modulation of pro-inflammatory enzyme activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号