首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid chromatography electrospray ionization tandem mass spectrometric (LC-ESI-MS/MS) qualitative and quantitative analysis of different extracts from the aerial parts and roots of Alchemilla acutiloba led to the identification of phenolic acids and flavonoids. To the best of our knowledge, isorhamnetin 3-glucoside, kaempferol 3-rutinoside, narcissoside, naringenin 7-glucoside, 3-O-methylquercetin, naringenin, eriodictyol, rhamnetin, and isorhamnetin were described for the first time in Alchemilla genus. In addition, the antioxidant, anti-inflammatory and cytotoxic activity of all extracts were evaluated. The results clearly showed that among analyzed extracts, the butanol extract of the aerial parts exhibited the highest biological activity comparable with the positive controls used.  相似文献   

2.
Cathissa reverchonii (formerly Ornithogalum reverchonii) is a threatened species, constituting an endemism present in the south of Spain and northern Morocco. In Spain, it is only found in two disjoint populations in the region of Andalusia. The determination of its chemical composition and the influence that environmental factors have on it can contribute significantly to the development of appropriate protection and conservation plans. However, there are no previous reports about this species to date. Consequently, this research aimed to study the phenolic composition and antioxidant activity of C. reverchonii and to assess the influence of environmental factors on the phenolic profile and bioactivity. The vegetal material was collected in seven places inhabited by the two separate populations in Spain. The phenolic composition of methanolic extracts of the species was determined by HPLC-ESI-Q-TOF-MS, and the antioxidant activity was assessed by DPPH and ABTS assays. Fifteen compounds were characterized in the extracts of the aerial parts of C. reverchonii, revealing differences in the phytochemical profile between both populations analyzed, mainly in the saponin fraction. The main phenolics were flavone di-C-glucoside (lucenin-2), followed by a quercetin-di-C-glucoside. The composition of the extracts of C. reverchonii and their radical scavenging power were compared with those of other species of the genus Ornithogalum L., revealing significant differences between the latter and the genus Cathissa.  相似文献   

3.
The antimicrobial properties of herbs from Papaveraceae have been used in medicine for centuries. Nevertheless, mutual relationships between the individual bioactive substances contained in these plants remain poorly elucidated. In this work, phytochemical composition of extracts from the aerial and underground parts of five Papaveraceae species (Chelidonium majus L., Corydalis cava (L.) Schweigg. and Körte, C. cheilanthifolia Hemsl., C. pumila (Host) Rchb., and Fumaria vaillantii Loisel.) were examined using LC-ESI-MS/MS with a triple quadrupole analyzer. Large differences in the quality and quantity of all analyzed compounds were observed between species of different genera and also within one genus. Two groups of metabolites predominated in the phytochemical profiles. These were isoquinoline alkaloids and, in smaller amounts, non-phenolic carboxylic acids and phenolic compounds. In aerial and underground parts, 22 and 20 compounds were detected, respectively. These included: seven isoquinoline alkaloids: protopine, allocryptopine, coptisine, berberine, chelidonine, sanguinarine, and chelerythrine; five of their derivatives as well as non-alkaloids: malic acid, trans-aconitic acid, quinic acid, salicylic acid, trans-caffeic acid, p-coumaric acid, chlorogenic acid, quercetin, and kaempferol; and vanillin. The aerial parts were much richer in phenolic compounds regardless of the plant species. Characterized extracts were studied for their antimicrobial potential against planktonic and biofilm-producing cells of S. aureus, P. aeruginosa, and C. albicans. The impact of the extracts on cellular metabolic activity and biofilm biomass production was evaluated. Moreover, the antimicrobial activity of the extracts introduced to the polymeric carrier made of bacterial cellulose was assessed. Extracts of C. cheilanthifolia were found to be the most effective against all tested human pathogens. Multiple regression tests indicated a high antimicrobial impact of quercetin in extracts of aerial parts against planktonic cells of S. aureus, P. aeruginosa, and C. albicans, and no direct correlation between the composition of other bioactive substances and the results of antimicrobial activity were found. Conclusively, further investigations are required to identify the relations between recognized and unrecognized compounds within extracts and their biological properties.  相似文献   

4.
Due to the presence of various phenolic compounds in D.sophia, this plant may have an inhibitory effect on α-Glc and ultimately diabetes control. Therefore, this work aims to scrutinize total phenolic, flavonoid contents, antioxidant capacity, and α-Glc inhibitory activity in aerial parts of methanolic D.sophia extract. The methanolic flower extracts were selected from among aerial parts for the experimental study of anti-diabetic effects by α-Glc inhibitory assays. The flower extracts were also studied by GC/MS to detect the compounds. The total phenolic and flavonoid contents were 21.38 ± 0.93 GAE/g and 96.2 ± 0.20 QE/g, respectively. The IC50 value of flower extract for α-Glc inhibition with mixed (Competitive/non-competitive) mode was found to be 20.34 ± 0.11 mg/ml. Furthermore, in-vivo studies showed that the blood glucose level reduced after consumption of flower extract compared to the control group. Twenty-one compounds were identified by GC/MS technique. These compounds were assessed for high docking scores against α-Glc in silico. Docking score calculations exhibited that the DES-α-Glc complex had a significantly higher binding energy (-6.13 Kcal/mol) than other compounds. The DES-α-Glc complex which displayed a higher docking energy value than the ACR was subjected to MDs studies. The findings of this study suggest that the flower extract of D.sophia can be used as a suitable additive in syrups or foods with anti-diabetic capacity.  相似文献   

5.
Oxidative stress is one of the significant precursors of various metabolic diseases such as diabetes, Parkinson’s disease, cardiovascular diseases, cancer, etc. Various scientific reports have indicated that secondary plant metabolites play an important role in preventing oxidative stress and its harmful effects. In this respect, this study was planned to investigate the phenolic profile and antioxidant and antidiabetic potentials of the aqueous extracts from Turkish Cistus species by employing in vitro methods. In vitro digestion simulation procedure was applied to all extracts to estimate the bioavailability of their phenolic contents. Total phenolic, flavonoid, phenolic acid and proanthocyanidin contents were determined for all phases of digestion. In addition, changes in the quantity of the assigned marker flavonoids (tiliroside, hyperoside and quercitrin) were monitored by High-Performance Thin Layer Chromatography (HPTLC) analysis. The antioxidant activity potentials of the extracts were studied by various methods to reveal their detailed activity profiles. On the other hand, in vitro α-amylase and α-glucosidase enzymes and advanced-glycation end product (AGE) inhibitory activities of the extracts were determined to evaluate the antidiabetic potentials of extracts. The results showed that aqueous extracts obtained from the aerial parts of Turkish Cistus species have rich phenolic contents and potential antioxidant and antidiabetic activities; however, their bioactivity profiles and marker flavonoid concentrations might significantly be affected by human digestion. The results exhibited that total phenolic contents, antioxidant activities and diabetes-related enzyme inhibitions of the bioavailable samples were lower than non-digested samples in all extracts.  相似文献   

6.
A dozen Iris species (Iridaceae) are considered traditional remedies in Kurdistan, especially for treating inflammations. Phytochemical studies are still scarce. The information reported in the literature about Iris species growing in Kurdistan has been summarized in the first part of this paper, although, except for Iris persica, investigations have been performed on vegetal samples collected in countries different from Kurdistan. In the second part of the work, we have investigated, for the first time, the contents of the methanolic extracts of Iris postii aerial parts and rhizomes that were collected in Kurdistan. Both extracts exhibited a significant dose-dependent free radical scavenging and total antioxidant activities, comparable to those of ascorbic acid. Medium-pressure liquid chromatographic separations of the two extracts afforded l-tryptophan, androsin, isovitexin, swertisin, and 2″-O-α-l-rhamnopyranosyl swertisin from the aerial parts, whereas ε-viniferin, trans-resveratrol 3,4′-O-di-β-d-glucopyranoside, and isotectorigenin were isolated from the rhizomes. This is the first finding of the last three metabolites from an Iris species. The various remarkable biological activities of isolated compounds scientifically sustain the traditional use of I. postii as a medicinal plant.  相似文献   

7.
Rooibos tea, produced from the endemic South African shrub Aspalathus linearis, has various health-promoting benefits which are attributed to its phenolic composition. Generating reliable, quantitative data on these phenolic constituents is the first step towards documenting the protective effects associated with rooibos tea consumption. Reversed phase liquid chromatographic (RP-LC) methods currently employed in the quantitative analysis of rooibos are, however, hampered by limited resolution and/or excessive analysis times. In order to overcome these limitations, a systematic approach towards optimising the RP-LC separation of the 15 principal rooibos tea phenolics on a 1.8 μm phase using conventional HPLC instrumentation was adopted. Kinetic plots were used to obtain the optimal configuration for the separation of the target analytes within reasonable analysis times. Simultaneous optimisation of temperature and gradient conditions provided complete separation of these rooibos phenolics on a 1.8 μm C18 phase within 37 min. The optimised HPLC–DAD method was validated and successfully applied in the quantitative analysis of aqueous infusions of unfermented and fermented rooibos. Major phenolic constituents of fermented rooibos were found to be a phenylpropanoid phenylpyruvic acid glucoside (PPAG), the dihydrochalcone C-glycoside aspalathin, the flavones isoorientin and orientin, and a flavonol O-diglycoside tentatively identified as quercetin-3-O-robinobioside. Content values for PPAG, ferulic acid and quercetin-3-O-robinobioside in rooibos are reported here for the first time. Mass spectrometric (MS) and tandem MS detection were used to tentatively identify 13 additional phenolic compounds in rooibos infusions, including a new luteolin-6-C-pentoside-8-C-hexoside and a novel C-8-hexosyl derivative of aspalathin reported here for the first time.  相似文献   

8.
A simple high-performance liquid chromatography (HPLC) method for the separation and quantitative determination of the main antioxidant phenolic compounds from bitter fennel, Foeniculum vulgare, was developed. The use of a narrow bore reversed phase (RP) C18 column and an acidic mobile phase enabled ten compounds (caffeoylquinic acids, dicaffeoylquinic acids, flavonoids and rosmarinic acid) to be separated within a 40 min time analysis. The method was validated to demonstrate its selectivity, linearity, precision, accuracy and robustness. In addition, some parameters were studied to optimize the complete extraction of the phenolic compounds. The method was applied to the evaluation of three different fennel materials: distilled and non-distilled aerial parts, as well as defatted fruits. Distilled fennel was found to contain a higher proportion of antioxidant phenolic compounds than the non-distilled plan material.  相似文献   

9.
In Iran and other parts of Western Asia, the oleaster (Elaeagnus angustifolia L.) fruit is processed in the dried powdery form, and in recent times, increasingly applied/sprinkled in fruit juices such as those made from oranges (Citrus sinensis L.). To our best knowledge, the effectiveness of oleaster fruit extract in fortifying the orange juice has not yet been reported and the knowledge of this will greatly benefit the consumers, particularly those around the Western Asia region. This current work, therefore, investigated the changes in physicochemical, free radical activity, total phenolic compounds, and sensory properties of orange juice fortified with different oleaster fruit extracts. The orange juice mix formulation comprised different concentrations (5, 10, 15, 20, and 25%) of oleaster (alcoholic, aqueous, and hydro-alcoholic) extracts. The control comprised orange concentrate (4% w/v), sugar (8.5% w/v), and citric acid (0.1% w/v) brought to the desirable volume with water. As the free radical activity depicted the antioxidant properties, the physicochemical aspects of this work involved the determinations of Brix, density, ash, pH, total acidity, sucrose, and total sugar, whereas the sensory aspects involved the determinations of color and taste. Whilst the aqueous oleaster 20 and 25% extracts produced notable physicochemical differences in the orange juice mix, both free radical activity, and phenolic compounds significantly increased (p < 0.05) after 30 days despite resembling (p > 0.05) those of control at day 1. More so, the increases in aqueous, alcoholic, and hydro-alcoholic oleaster extracts would decrease (p < 0.05) the sensory color and taste of the orange juice mix in this study.  相似文献   

10.
Hypericum (Hypericaceae) is a genus that comprises a high number of species around the world. In this study, the roots, aerial parts, flowers, fruits, and aerial parts with flowers from Hypericum scabrum were macerated separately by methanol and water and then fractionated by different solvents of, such as ethyl acetate, n-hexane, butanol, dichloromethane, aqueous residue sub-extracts, and ethnobotanical use. All the extracts, sub-extracts and essential oils of H. scabrum were investigated for the first time in detail for their antimicrobial, total phenolics, and antioxidant activities. Anatomical structures of the root, stem, leaf, upper and lower leaf surface, stamen, sepal, and petal of H. scabrum were examined. The biochemical layout of essential oils was determined by GC and GC/MS. The antioxidant activity was determined by free radical scavenging activity (by DPPH). Antimicrobial activity was applied against Candida albicans ATCC 10231, Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 19659, and C. tropicalis ATCC 750 using microdilution methods. The essentials of the aerial parts, flower, and fruit are characterized by the presence of monoterpene hydrocarbons, whereas roots oil include alkanes. The GC-FID and GC-MS analysis showed that major components of roots, aerial parts, flowers, and fruits oils were undecane (66.1%); α-pinene (17.5%), γ-terpinene (17.4%), and α-thujene (16.9%); α-pinene (55.6%), α-thujene (10.9%), and γ-terpinene (7.7%); α-pinene (85.2%), respectively. The aerial part sub-extracts indicated a greater level of total phenolics and antioxidant potential. The n-hexane sub-extracts (from aerial part, flower, and aerial part with flower) showed the best activity against B. subtilis, with 39.06 µg/mL MIC value. The presented research work indicates that H. scabrum can be a novel promising resource of natural antioxidant and antimicrobial compounds.  相似文献   

11.
UV-B and IR-A radiation are important inducers of biological changes in skin involving ROS generation. The overloading of antioxidant defense mechanisms by ROS production could lead to photoaging and photocarcinogenesis processes. Various traditional usages are reported for Aralia nudicaulis L. extracts, including treatment of dermatological disorders. Antioxidant and anti-inflammatory properties have already been reported for other Aralia species possibly due to the presence of phenolic compounds. However, the phenolic composition and the potential activity of A. nudicaulis rhizomes extract against oxidative stress and UV/IR damages have not been investigated. The main aims of this study were to prepare a fraction enriched in phenolic compounds (FEPC) from A. nudicaulis rhizomes, to identify its major phenolic compounds and to assess its potential for protective effects against oxidative stress induced by UV-B, IR-A or inflammation. A quantitative LC-MS study of FEPC shows that chlorogenic, caffeic and protocatechuic acids are the main phenolic compounds present, with concentrations of 15.6%, 15.3% and 4.8% of the total composition, respectively. With a validated analytical method, those compounds were quantified over different stages of the growing period. As for biological potential, first this extract demonstrates antioxidant and anti-inflammatory activities. Furthermore, ROS generation induced by IR-A and UV-B were strongly inhibited by A. nudicaulis extract, suggesting that Aralia nudicaulis L. rhizome extract could protect dermal cells against oxidative stress induced by UV-B and IR-A.  相似文献   

12.
Rhodiola crenulata (RC) and Rhodiola fastigiata (RF) are representative species of Rhodiola with well-accepted health benefits; the roots are the medicinal part. However, prior to this study, the differences in phytochemicals between these two species and different parts of the same species remained unclear. Using LC-ESI-MS/MS, HS-SPME-GC–MS, chemical and sensory analyses, volatile compounds and non-volatile compounds, and antioxidant activities of the roots of Rhodiola crenulata and Rhodiola fastigiata and four parts (roots, leaves, flowers, and above-ground stems) of RC were investigated. The volatile compounds and non-volatile compounds of RC roots exhibited upregulation overall compared to those of RF roots, and the odorousness, phenolic content, and antioxidant activity were more pronounced in the RC roots. The phenolic content and antioxidant activity of roots and leaves, alongside the odorousness of roots and flowers, were more significant among the four parts of RC, and the RC roots and RC flowers exhibited similar odorousness. Comparison of non-volatile differential metabolites between RC roots and RC leaves showed upregulations of saccharides and phospholipids, and minor upregulations of flavonoids and phenylpropanoids in the roots; in addition, amino acids, organic acids, and vitamins were upregulated in the leaves. These results revealed the following: 1) RC roots are superior to RF roots regarding volatile compounds and non-volatile compounds, and antioxidant activity; 2) it is more favorable to select RC roots for exploiting volatile compounds compared with RC flowers in consideration of the biomass available; 3) in terms of non-volatile compounds, and antioxidant ability, RC leaves are also of great value in addition to RC roots, though these two parts show distinct characteristics.  相似文献   

13.
Three species from the Eryngium L. genus—E. campestre, E. maritimum, and E. planum, plants with a rich chemical composition, were selected for phytochemical and biological studies. The applied biotechnological methods allowed to obtain the biomass of these rare or protected species in the form of multiplied shoots (stationary system) and roots cultured in a liquid medium (agitated system). In the extracts from the raw material obtained under in vitro conditions, the content of selected phenolic acids and flavonoids (HPLC-DAD method) as well as the total of polyphenols (Folin–Ciocalteu assay) were quantified. The highest amount of all phenolic compounds was found in extracts from E. planum roots (950.90 ± 33.52 mg/100 g d.w.), and the lowest from E. campestre roots (285.00 ± 10.07 mg/100 g d.w.). The quantitatively dominant compound proved to be rosmarinic acid. The highest amounts were confirmed for E. planum root extract (694.58 mg/100 g d.w.), followed by E. planum (388.95 mg/100 g d.w.) and E. campestre (325.85 mg/100 g d.w.) shoot extracts. The total content of polyphenols was always increased in the biomass from in vitro cultures in comparison to the analogous organs of intact plants of each species. The obtained extracts were assessed for antiprotozoal activity against Acanthamoeba sp. The strength of biological activity of the extracts correlated with the content of phenolic compounds. To our knowledge, this is the first report on the amoebicidal activity of E. campestre, E. maritimum, and E. planum extracts from biomass produced by biotechnological methods.  相似文献   

14.
The aim of this paper was to determine the effect of the hydrolysis method on the amounts of phenolic compounds in the plant material in soil and, as a consequence, on the parameters to determine the degree of lignins transformation in soils. The study included the plant material (hay, sward, and roots) and soil—Albic Brunic Arenosol (horizon A, AE, and Bsv) samples. Phenolic compounds were isolated at two stages by applying acid hydrolysis followed by alkaline re-hydrolysis. The quantitative and qualitative analysis of phenolic compounds was performed with high-performance liquid chromatography with a DAD. The content of phenolic compounds in the extracts depended on the hydrolysis method and it was determined by the type of the research material. The amounts of phenolic compounds contained in the alkaline hydrolysates accounted for 55.7% (soil, horizon Bsv)—454% (roots) of their content in acid hydrolysates. In the extracts from acid hydrolysates, chlorogenic and p-hydroxybenzoic acids were dominant. In the alkaline extracts from the plant material, the highest content was recorded for p-coumaric and ferulic acids, and in the extracts from soil, ferulic and chlorogenic acids. A combination of acid and alkaline hydrolysis ensures the best extraction efficiency of insoluble-bound forms of polyphenols from plant and soil material.  相似文献   

15.
The chemical composition of the hydroethanolic extracts (60% v/v) from the aerial parts of Thymus marschallianus Willd (TM) and Thymus seravschanicus Klokov (TS) from Southern Kazakhstan flora was analyzed together with their hexane fractions. Determination of antibacterial, antifungal and antioxidant activities of both extracts was also performed. RP-HPLC/PDA and HPLC/ESI-QTOF-MS showed that there were some differences between the composition of both extracts. The most characteristic components of TM were rosmarinic acid, protocatechuic acid, luteolin 7-O-glucoside, and apigenin 7-O-glucuronide, while protocatechuic acid, luteolin 7-O-glucoside, luteolin 7-O-glucuronide, and eriodictyol predominated in TS. The content of polyplenols was higher in TS than in TM. The GC-MS analysis of the volatile fraction of both examined extracts revealed the presence of thymol and carvacrol. Additionally, sesquiterpenoids, fatty acids, and their ethyl esters were found in TM, and fatty acid methyl esters in TS. The antioxidant activity of both extracts was similar. The antibacterial activity of TS extract was somewhat higher than TM, while antifungal activity was the same. TS extract was the most active against Helicobacter pylori ATCC 43504 with MIC (minimal inhibitory concentration) = 0.625 mg/mL, exerting a bactericidal effect. The obtained data provide novel information about the phytochemistry of both thyme species and suggest new potential application of TS as a source of bioactive compounds, especially with anti-H. pylori activity.  相似文献   

16.
The phytochemical composition of leaves, stems, pericarps and rhizomes ethanolic extracts of Asparagus acutifolius were characterized by HPLC-DAD-MS. A. acutifolius samples contain at least eleven simple phenolics, one flavonon, two flavonols and six steroidal saponins. The stem extracts showed the highest total phenolic acid and flavonoid contents, where cafeic acid and rutin were the main compounds. No flavonoids were detected in the leaf, pericarp or rhizome while caffeic acid and ferulic acid were the predominant. Steroidal saponins were detected in the different plant parts of A. acutifolius, and the highest contents were found in the rhizome extracts. The stem extracts exhibited the highest antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) and the highest 2,2-azino-bis (3 ethylbenzothiazoline-6-sulphonic acid) (ABTS) scavenging activity was found in the pericarp extracts. The rhizome and leaf extracts showed a potent cytotoxic activity against HCT-116 and HepG2 cell lines. Moreover, the pericarp and rhizome extracts revealed a moderate lipase inhibitory activity. The leaf and rhizome extracts were screened for their antimicrobial activity against human pathogenic isolates. The leaf extract exhibited a powerful inhibitory activity against all the bacteria and fungi tested.  相似文献   

17.
A simple and rapid method has been used for the screening and identification of the main phenolic compounds from Helichrysum devium using high‐performance liquid chromatography with on‐line UV and electrospray ionization mass spectrometric detection (LC‐DAD/ESI‐MSn). The total aerial parts and different morphological parts of the plant, namely leaves, flowers and stems, were analyzed separately. A total of 34 compounds present in the methanolic extract from Helichrysum devium were identified or tentatively characterized based on their UV and mass spectra and retention times. Three of these compounds were positively identified by comparison with reference standards. The phenolic compounds included derivatives of quinic acid, O‐glycosylated flavonoids, a caffeic acid derivative and a protocatechuic acid derivative. The characteristic loss of 206 Da from malonylcaffeoyl quinic acid was used to confirm the malonyl linkage to the caffeoyl group. This contribution presents one of the first reports on the analysis of phenolic compounds from Helichrysum devium using LC‐DAD/ESI‐MSn and highlights the prominence of quinic acid derivatives as the main group of phenolic compounds present in these extracts. We also provide evidence that the methanolic extract from the flowers was significantly more complex when compared to that of other morphological parts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
(The spectrophotometric determination of phenolic compounds in vegetable extracts by oxidation with copper(II) in nonaqueous media)Oxidation with copper(II) in nonaqueous medium is used for the o-diphenolic compounds chlorogenic acid, rutin, pyrocatechol and epicatechol. A spectrophotometric study of the o-diphenol and o-quinone forms leads to the establishment of two systems of equations for the determination of these compounds. This study complements earlier results. The validity of the method is discussed on the basis of results obtained with Passe-crassane pear extracts.  相似文献   

19.
《Comptes Rendus Chimie》2016,19(9):1124-1132
Phenolic compounds were selectively extracted from aerial parts of Anvillea radiata using Accelerated Solvent Extraction (ASE) in two steps. Given the two molecular families (flavonoids and germacranolides) described as present in the plant material, a first extraction step using chloroform as the extraction solvent was carried out to remove the germacranolides, the most abundant compounds. The minor phenolic compounds were then selectively extracted and enriched from the plant residue by methanol. Characterization of twenty five phenolic compounds in the methanolic extract was performed using HPLC-DAD-ESI-MS/MS and HPLC-HRMS analyses. Seven compounds corresponded to chlorogenic acid and dicaffeoylquinic acid derivatives and eighteen flavonoids (from which five aglycones and thirteen glycosides) were identified and some of them for the first time.The presence of these phenolic compounds, identified in the whole aerial parts, was then followed in each organ (flower, leave and stem). The chromatographic profiles of the stem and leave were very close, while the flower one was more different. However most of the compounds identified in aerial parts were recovered in each organ, mainly difference on peak intensity could be observed. The most abundant compound in flowers was found to be a di-caffeoylquinic acid derivative while isorhamnetin and spinacitin diglucoside derivatives were the most abundant ones in stems and leaves.  相似文献   

20.
Three species of Echinacea (Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida) are commonly used for medicinal purposes. The phenolic compounds caftaric acid, cichoric acid, echinacoside, cynarin, and chlorogenic acid are among the phytochemical constituents that may be responsible for the purported beneficial effects of the herb. Although methods for the analysis for these compounds have been published, documentation of their validity was inadequate as the accuracy and precision for the detection and quantification of these phenolics was not systematically determined and/or reported. To address this issue, the high-performance liquid chromatography method, originally developed by the Institute for Nutraceutical Advancement (INA), was reviewed, optimized, and validated for the detection and quantification of these phenolic compounds in Echinacea roots and aerial parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号