首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The effect of nano SiO2 and TiO2 fillers on the thermal, mechanical and electrochemical properties of PVA:PVdF:LiCF3SO3 have been investigated by three optimized systems of SPE (80PVA:20PVdF:15LiCF3SO3), CPE-I (SPE:8SiO2) and CPE-II (SPE:4TiO2). From the TGA curve least weight loss has been observed for CPE-II indicating high thermal stability compared to other systems. Stress–strain curve of the prepared samples confirm the enhancement of tensile strength in CPE-II compared to CPE-I and SPE. Conductivity studies show that addition of TiO2 filler slightly enhances ionic conductivity 3.7×10−3 S cm−1 compared to filler free system at 303 K. Dielectric plots have been analyzed and CPE-II possesses higher dielectric constant compared to CPE-I and filler free system. Temperature dependence of modulus plots has been studied for highest conductivity possessing sample. Wider electrochemical stability has been obtained for nano-composite polymer electrolytes. The results conclude that the prepared CPE-II shows the best performance and it will be well suited for lithium ion batteries.  相似文献   

2.
Contemporary linear accelerators applied in radiotherapy generate X-ray and electron beams with energies up to 20 MeV. Such high-energy therapeutic beams induce undesirable photonuclear (γ,n) and electronuclear (e,e'n) reactions in which neutrons and radioisotopes are produced. The originated neutron can also induce reactions such as simple capture, (n,γ), reactions that produce radioisotopes. In this work measurements of the non-therapeutic neutrons and the induced gamma radiation were carried out in the vicinity of a new medical accelerator, namely the Varian TrueBeam. The TrueBeam is a new generation Varian medical linac making it possible to generate the X-ray beams with a dose rate higher than in the case of the previous models by Varian. This work was performed for the X-ray beams with nominal potentials of 10 MV (flattening filter free), 15 MV and 20 MV, and for a 22 MeV electron beam. The neutron measurements were performed by means of a helium chamber and the induced activity method. The identification of radioisotopes produced during emission of the therapeutic beams was based on measurements of the energy spectra of gammas emitted in decays of the produced nuclei. The gamma energy spectra were measured with the use of the high-purity germanium detector. The correlation between the neutron field and the mode and nominal potential was observed. The strongest neutron fluence of 3.1 × 106 cm−2 Gy−1 and 2.0 × 106 cm−2 Gy−1 for the thermal and resonance energies, respectively, was measured during emission of the 20 MV X-ray beam. The thermal and resonance neutron fluence measured for the 15 MV X-rays was somewhat less, at 1.1 × 106 cm−2 Gy−1 for thermal neutrons and 6.7 × 105 cm−2 Gy−1 for resonance neutrons. The thermal and resonance neutron fluences were smallest for the 10 MV FFF beam and the 22 MeV electron beam and were around two orders of magnitude smaller than those of the 20 MV X-ray beam. This work has shown that the neutron reactions are dominant because of relatively high cross sections for many elements used in the accelerator construction. The detailed analysis of the measured spectra made it possible to identify 11 radioisotopes induced during TrueBeam delivery. In this work the following radioisotopes were identified: 56Mn, 122Sb, 124Sb, 131Ba, 82Br, 57Ni, 57Co, 51Cr, 187W, 24Na and 38Cl.  相似文献   

3.
A simple and robust detector for spectrometry of environmental neutrons has been developed. The technique is based on neutron activation of a series of different metal disks followed by low-level gamma-ray spectrometry of the activated disks and subsequent neutron spectrum unfolding. The technique is similar to foil activation but here the applied neutron fluence rates are much lower than usually in the case of foil activation. The detector has been tested in quasi mono-energetic neutron fields with fluence rates in the order of 1000–10000 cm−2 s−1, where the obtained spectra showed good agreement with spectra measured using a Bonner sphere spectrometer. The detector has also been tested using an AmBe source and at a neutron fluence rate of about 40 cm−2 s−1, again, a good agreement with the assumed spectrum was achieved.  相似文献   

4.
Kumar  Rajiv  Arora  Narinder  Sharma  Shuchi  Dhiman  Naresh  Pathak  Dinesh 《Ionics》2017,23(10):2761-2766

Nano-composite polymer gel electrolytes were synthesized by using polyethylene oxide (PEO), ammonium tetrafluoroborate (NH4BF4), fumed silica (SiO2), dimethylacetamide (DMA), ethylene carbonate (EC), and propylene carbonate (PC) and characterized by conductivity studies. The effect of donor number of solvent on ionic conductivity of polymer gel electrolytes has been studied. The mechanical strength of the gel electrolytes has been increased with the addition of nano-sized fumed silica along with an enhancement in conductivity. Maximum room temperature ionic conductivity of 2.63 × 10−3 and 2.92 × 10−3 S/cm has been observed for nano-composite gel electrolytes containing 0.1 and 0.5 wt% SiO2 in DMA+1 M NH4BF4+10 wt% PEO, respectively. Nano-composite polymer gel electrolytes having DMA have been found to be thermally and electrically stable over 0 to 90 °C temperature range. Also, the change in conductivity with the passage of time is very small, which may be desirable to make applicable for various smart devices.

  相似文献   

5.
Ge ions of 100 keV were implanted into a 120 nm-thick SiO2 layer on n-Si at room temperature while those of 80 keV were into the same SiO2 layer on p-Si. Samples were, subsequently, annealed at 500°C for 2 h to effectively induce radiative defects in the SiO2. Maximum intensities of sharp violet photoluminescence (PL) from the SiO2/n-Si and the SiO2/p-Si samples were observed when the samples have been implanted with doses of 1×1016 and 5×1015 cm−2, respectively. According to current–voltage (IV) characteristics, the defect-related samples exhibit large leakage currents with electroluminescence (EL) at only reverse bias region regardless of the type of substrate. Nanocrystal-related samples obtained by an annealing at 1100°C for 4 h show the leakage at both the reverse and the forward region.  相似文献   

6.
The Gamma-3 assembly is located at the Joint Institute for Nuclear Research, Dubna, Russia. It consists of a cylindrical lead target (ø = 8 cm, L = 58.8 cm) surrounded by reactor grade graphite (110 × 110 × 60 cm). The target was irradiated with a beam of 1.6 GeV deuterons from the Nuclotron accelerator and CR-39 track detectors coupled to LR-115 2B film were used to measure the slow neutron distribution on the surface of the graphite. The detection efficiency of the CR-39 in the CR-39/LR-115 2B system was measured using a custom made calibration setup and found to be (1.12 ± 0.05) × 10−3 and (6.1 ± 1.2) × 10−4 tracks per neutron, for thermal and epithermal neutrons respectively, under the etching and counting procedures described in this work. The irradiation of the Gamma-3 was also simulated using MCNPX 2.7 Monte Carlo code and good agreement between the experimental and calculated track densities was found. This serves as a good validation for the computational models used to simulate spallation neutron production, transport and moderation.  相似文献   

7.
Boopathi  G.  Pugalendhi  S.  Selvasekarapandian  S .  Premalatha  M.  Monisha  S.  Aristatil  G. 《Ionics》2017,23(10):2781-2790

A proton-conducting polymer electrolyte based on agar and ammonium nitrate (NH4NO3) has been prepared through solution casting technique. The prepared polymer electrolytes were characterized by impedance spectroscopy, X-ray diffraction, and Fourier transform infra-red spectroscopy. Impedance analysis shows that sample with 60 wt.% NH4NO3 has the highest ionic conductivity of 6.57 × 10−4 S cm−1 at room temperature. As a function of temperature, the ionic conductivity exhibits an Arrhenius behaviour increasing from 6.57 × 10−4 S cm−1 at room temperature to 1.09 × 10−3 S cm−1 at 70 °C. Transport parameters of the samples were calculated using Wagner’s polarization method and thus shows that the increase in conductivity is due to the increase in the number of mobile ions. Fuel cell has been constructed with the highest proton conductivity polymer 40agar/60NH4NO3 and the open circuit voltage is found to be 558 mV.

  相似文献   

8.
Amorphous Si/SiO2(a-Si/SiO2) superlattices have been fabricated by the magnetron sputtering technique. The superlattice with an Si layer thickness of 1.8 nm has been characterized by transmission electron microscopy (TEM). The result indicates that most of the regions in the Si layer consist of amorphous phase, while regular structure appears in some local regions. This is in agreement with the Raman scattering spectroscopy. The optical absorption spectrum and photoluminescence (PL) spectrum have been measured. Moreover, the third-order optical nonlinearity χ(3)of this superlattice has been measured. To our knowledge, this is the first investigation of the nonlinear absorption and refractive index of an a-Si/SiO2superlattice using the Z -scan technique. The real and imaginary parts of χ(3)have been found to be 1.316  ×  10  7eus and   5.596  ×  10  7eus, respectively, which are about two orders of magnitude greater than those of porous silicon. The results may be attractive for potential application in electro-optics devices.  相似文献   

9.
《Solid State Ionics》2006,177(26-32):2601-2603
New Li+ ion-conductive glasses Li2S–B2S3–Li4SiO4 were synthesized by rapid quenching, and they were transformed into glass ceramics by heat treatment. The heat treatment increased the ionic conductivities of the Li4SiO4-doped glasses, and the highest ionic conductivity observed in the system was 1.0 × 10 3 S cm 1 at room temperature. The glass ceramics were highly stable against electrochemical oxidation with a wide electrochemical window of 10 V.  相似文献   

10.
《Current Applied Physics》2018,18(1):107-113
In c-Si solar cells, surface recombination velocity increases as the wafer thickness decreases due to an increase in surface to volume ratio. For high efficiency, in addition to low surface recombination velocity at the rear side, a high internal reflection from the rear surface is also required. The SiOxNy film with low absorbance can act as rear surface reflector. In this study, industrially feasible SiO2/SiOxNy stack for rear surface passivation and screen printed local aluminium back surface field were used in the cell structure. A 3 nm thick oxide layer has resulted in low fixed oxide charge density of 1.58 × 1011 cm−2 without parasitic shunting. The oxide layer capped with SiOxNy layer led to surface recombination velocity of 155 cm/s after firing. Using single layer (SiO2) rear passivation, an efficiency of 18.13% has been obtained with Voc of 625 mV, Jsc of 36.4 mA/cm2 and fill factor of 78.7%. By using double layer (SiO2/SiOxNy stack) passivation at the rear side, an efficiency of 18.59% has been achieved with Voc of 632 mV, Jsc of 37.6 mA/cm2, and fill factor of 78.3%. An improved cell performance was obtained with SiO2/SiOxNy rear stack passivation and local BSF.  相似文献   

11.
BaSO4:Eu2+ phosphor has been investigated for its photoluminescence (PL), thermoluminescence (TL), TL kinetics, optically stimulated luminescence (OSL) and thermally assisted OSL (TA-OSL) response. PL spectra showed the characteristic emission of Eu2+ ion at 375 nm when excited by 320 nm. The luminescence lifetime has been measured as 40 and 628 μs of fast and slow components respectively. The TL parameters such as trap depth (E), frequency factor (s) and the order of kinetics (b) are determined. The phosphor is found to be 6 and 4 times more sensitive than CaSO4:Dy and α-Al2O3:C, respectively, in TL mode. However, its OSL sensitivity is 75% of α-Al2O3:C. It is found to possess three OSL components having photoionization cross-sections of 1.4 × 10−17, 1.2 × 10−18 and 5.2 × 10−19 cm2 respectively. The temperature dependence of OSL studies showed that integrated TA-OSL signal increases with stimulation temperature between 50 and 250 °C, while between 260 and 450 °C the signal intensity decreases. This behavior is interpreted to arise from competing effects of thermal assistance (activation energy EA = 0.063 ± 0.0012 eV) and depletion of trapped charges. This increase of OSL at elevated temperature can be employed for enhancing the sensitivity of phosphor for radiation dosimetry.  相似文献   

12.
Development and characterisation of polyethylene oxide (PEO)-based nanocomposite polymer electrolytes comprising of (PEO-SiO2): NH4SCN is reported. For synthesis of the said electrolyte, polyethylene oxide has been taken as polymer host and NH4SCN as an ionic charge supplier. Sol–gel-derived silica powder of nano dimension has been used as ceramic filler for development of nanocomposite electrolytes. The maximum conductivity of electrolyte ∼2.0 × 10−6 S/cm is observed for samples containing 30 wt.% silica. The temperature dependence of conductivity seems to follow an Arrhenius-type, thermally activated process over a limited temperature range.  相似文献   

13.
The supra-atomic structure of single crystals of synthetic quartz with a dislocation density of 54 cm?2 in their initial state and after irradiation in a VVR-M reactor by fast neutrons with the energy, E n > 0.1 MeV, at fluences of 2.3 × 1019 and 4.5 × 1019 N/cm2, has been studied by the method of small-angle thermal neutron scattering. It has been established that fast neutrons create point, linear, and bulk defects throughout the entire material. It has been shown that extended defects have a significant integral length per volume unit equal to ??3 × 1011 cm/cm3, and can form a consolidated network in the sample with a cell size of ??30 nm, through the channels of which the migration of impurity atoms and molecules is possible.  相似文献   

14.
In this paper, the effect of neutron irradiation on sapphire single crystal with fast neutron of 1.0×1018 and 1.0×1019 neutrons/cm2 has been investigated along with the effect of annealing temperature. It is found that the colorless transparent sapphire single crystals were turned yellow after 10 MeV fast neutron irradiation at room temperature. There are peaks at 206, 230, 258, 305, 358 and 452 nm after neutron irradiation. And the intensity of optical absorption bands decrease with wavelength and annealing temperature. A new absorption peak at 452 nm was found after isothermal annealing at 400 °C for 10 min, which was ascribed to F2+ color center. Because of the recombination of interstitial ions and vacancies, color centers were almost removed after annealing at 1000 °C. The TL peaks were found to shift to higher temperature after neutron irradiation. And a higher fluence of the neutron irradiation would result in deep traps revealed as the new TL peaks at 176 and 227 °C.  相似文献   

15.
《Current Applied Physics》2015,15(4):535-540
Carrier injection and charge loss characteristics of nonvolatile memories with chemically-synthesized (CS) and vacuum-deposited (VD) gold nanoparticles (Au-NPs) have been investigated. Compared to CS counterparts, the memories with VD Au-NPs exhibit a higher dot density of 3.77 × 1011 cm−2, leading to a larger memory window. Further, the energy from valence-band edge to vacuum level (EVB_vac) of tunneling oxide for the samples with CS and VD Au-NPs is found to be 9.04 and 9.85 eV respectively. The small EVB_vac value of the memories with CS Au-NPs is resulted from the formation of a thin chemical oxide (SiOx) on thermally-grown SiO2 tunneling layer during the chemically synthesized process, contributing to a slow erasing behavior. Besides, the programming of the memories with VD Au-NPs is saturated at high gate bias, which has been well-explained by the electrons induced potential coupling between Au-NPs. Superior data retention property and high temperature dependence of charge loss are observed for the memories with CS Au-NPs, which can be ascribed to the thick tunneling oxide layer by the additional SiOx film.  相似文献   

16.
The properties of ZnS(Ag)/6LiF samples with three different mass ratios were studied. The study showed that the EJ426 sample with the mass ratio of 3:1 had the highest detection efficiency of thermal neutrons, which was 32.4% in the experiment. Furthermore, this sample had the largest charge spectrum. The light yield of its surface at the average value of the charge spectrum was approximately 8.01 × 103 photons/neutron. The gamma sensitivity of the sample was better than 10−6 at the threshold of 350 photoelectrons. Therefore, EJ426 is a good candidate for a position-sensitive thermal neutron detector.  相似文献   

17.
《Solid State Ionics》2006,177(26-32):2417-2419
NH4PO3/SiO2 composite based electrolyte with SiO2 as supporting matrix was prepared. A thermogravimetric analysis was performed. Its electrochemical properties were investigated by an impedance spectroscopy within the temperature range of 100–300 °C under dry and humid atmospheres. The maximum conductivity is 6 mS cm 1 at 300 °C under dry N2 and 0.1 S cm 1 at 200 °C under humid N2.  相似文献   

18.
《Applied Surface Science》2005,239(3-4):481-489
The current–voltage (IV) characteristics of Al/SnO2/p-Si (MIS) Schottky diodes prepared by means of spray deposition method have been measured at 80, 295 and 350 K. In order to interpret the experimentally observed non-ideal Al/SnO2/p-Si Schottky diode parameters such as, the series resistance Rs, barrier height ΦB and ideality factor n, a novel calculation method has been reported by taking into account the applied voltage drop across interfacial oxide layer Vi and ideality factor n in the current transport mechanism. The values obtained for Vi were subtracted from the applied voltage values V and then the values of Rs were recalculated. The parameters obtained by accounting for the voltage drop Vi have been compared with those obtained without considering the above voltage drop. It is shown that the values of Rs estimated from Cheung’s method were strongly temperature-dependent and decreased with increasing temperature. It is shown that the voltage drop across the interfacial layer will increase the ideality factor and the voltage dependence of the IV characteristics. The interface state density Nss of the diodes has an exponential growth with bias towards the top of the valance band for each temperature; for example, from 2.37 × 1013 eV−1 cm−2 in 0.70−Ev eV to 7.47 × 1013 eV−1 cm−2 in 0.62−Ev eV for 295 K. The mean Nss estimated from the IV measurements decreased with increasing the temperature from 8.29 × 1013 to 2.20 × 1013 eV−1 cm−2.  相似文献   

19.
Single crystals of gadolinium orthosilicate Gd2SiO5 containing 0.5 at% and 5 at% of Sm3+ were grown by the Czochralski method. Optical absorption spectra, luminescence spectra and luminescence decay curves were recorded for these systems at 10 K and at room temperature. Comparison of optical spectra recorded in polarized light revealed that the anisotropy of this optically biaxial host affects the intensity distribution within absorption and emission bands related to transitions between multiplets rather than the overall band intensity. It has been found that among four bands of luminescence related to the 4G5/26HJ (J=5/2–11/2) transitions of Sm3+ in the visible and near infrared region the 4G5/26H7/2 one has the highest intensity with a peak emission cross section of 3.54×10−21 cm2 at 601 nm for light polarized parallel to the crystallographic axis c of the crystal. The luminescence decay curve recorded for Gd2SiO5:0.5 at% Sm3+ follows a single exponential time dependence with a lifetime 1.74 ms, in good agreement with the 4G5/2 radiative lifetime τ rad=1.78 ms calculated in the framework of Judd-Ofelt theory. Considerably faster and non-exponential luminescence decay recorded for Gd2SiO5:5 at% Sm3+ sample was fitted to that predicted by the Inokuti-Hirayama theory yielding the microparameter of Sm3+–Sm3+ energy transfer C da=1.264×10−52 cm6×s−1.  相似文献   

20.
Hema  M.  Tamilselvi  P.  Hirankumar  G. 《Ionics》2017,23(10):2707-2714

In recent years, solid polymer electrolytes have been extensively studied due to its flexibility, electrochemical stability, safety, and long life for its applications in various electrochemical devices. Interaction of LiCF3SO3 and TiO2 nanofiller in the optimized composition of PVA:PVdF (80:20—system-A possessing σ ~ 2.8 × 10−7 Scm−1 at 303 K) blend polymer electrolyte have been analyzed in the present study. LiCF3SO3 has been doped in system-A, and the optimized LiCF3SO3 doped sample (80:20:15-system-B possessing σ ~ 2.7 × 10−3 Scm−1 at 303 K) has been identified. The effect of different concentration of TiO2 in system-B has been analyzed and the optimized system is considered as system-C (σ ~ 3.7 × 10−3 Scm−1 at 303 K). The cost effective, solution casting technique has been used for the preparation of the above polymer electrolytes. Vibrational, structural, mechanical, conductivity, thermal, and electrochemical properties have been studied using FTIR, XRD, stress-strain, AC impedance spectroscopic technique, DSC and TGA, LSV, and CV respectively to find out the optimized system. System-C possessing the highest ionic conductivity, higher tensile strength, low crystallinity, high thermal stability, and high electrochemical stability (greater than 5 V vs Li/Li+) is well suitable for lithium ion battery application.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号