首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Using either nitroxide mediated polymerization (NMP) or reversible addition fragmentation transfer (RAFT) techniques, novel block copolymers that present terminal acetylenes, in the side chain of the styrenic block, were obtained with narrow polydispersities and targeted molecular weights. For the conversion of these acetylene-functionalized polymers to amphiphilic block copolymers, RAFT techniques were preferred. Mild protection/deprotection chemistries were employed which were compatible with the incorporation of the acetylene functionality in the hydrophobic segment. These acetylene-functionalized, Click-readied amphiphilic block copolymers were then self-assembled and cross-linked to afford shell cross-linked knedel-like (SCK) nanoparticles that contained acetylene groups in the core domain. The hydrodynamic diameters (D(h)) of the block copolymer micelles and nanoparticles were determined by dynamic light scattering (DLS), and the dimensions of the nanoparticles were characterized using tapping-mode atomic force microscopy (AFM) and transmission electron microscopy (TEM). The chemical availability of the Click functionality within the core domain of the SCKs was investigated using the copper(I)-catalyzed 1,3-dipolar fluorogenic cycloaddition with a non-fluorescent 3-azidocoumarin profluorophore to afford intensely fluorescent nanoparticles.  相似文献   

3.
Fluorogenic reactions, in which non‐ or weakly fluorescent reagents produce highly fluorescent products, are attractive for detecting a broad range of compounds in the fields of bioconjugation and material sciences. Herein, we report that a dibenzocyclooctyne derivative modified with a cyclopropenone moiety (Fl‐DIBO) can undergo fast strain‐promoted cycloaddition reactions under catalyst‐free conditions with azides, nitrones, nitrile oxides, as well as mono‐ and disubstituted diazo‐derivatives. Although the reaction with nitrile oxides, nitrones, and disubstituted diazo compounds gave cycloadducts with low quantum yield, monosubstituted diazo reagents produced 1H‐pyrazole derivatives that exhibited an approximately 160‐fold fluorescence enhancement over Fl‐DIBO combined with a greater than 10 000‐fold increase in brightness. Concluding from quantum chemical calculations, fluorescence quenching of 3H‐pyrazoles, which are formed by reaction with disubstituted diazo‐derivatives, is likely due to the presence of energetically low‐lying (n,π*) states. The fluorogenic probe Fl‐DIBO was successfully employed for the labeling of diazo‐tagged proteins without detectable background signal. Diazo‐derivatives are emerging as attractive reporters for the labeling of biomolecules, and the studies presented herein demonstrate that Fl‐DIBO can be employed for visualizing such biomolecules without the need for probe washout.  相似文献   

4.
5.
Live-cell imaging with fluorescent probes is an essential tool in chemical biology to visualize the dynamics of biological processes in real-time. Intracellular disease biomarker imaging remains a formidable challenge due to the intrinsic limitations of conventional fluorescent probes and the complex nature of cells. This work reports the in cellulo assembly of a fluorescent probe to image cyclooxygenase-2 (COX-2). We developed celecoxib-azide derivative 14 , possessing favorable biophysical properties and excellent COX-2 selectivity profile. In cellulo strain-promoted fluorogenic click chemistry of COX-2-engaged compound 14 with non/weakly-fluorescent compounds 11 and 17 formed fluorescent probes 15 and 18 for the detection of COX-2 in living cells. Competitive binding studies, biophysical, and comprehensive computational analyses were used to describe protein-ligand interactions. The reported new chemical toolbox enables precise visualization and tracking of COX-2 in live cells with superior sensitivity in the visible range.  相似文献   

6.
7.
The importance of bioconjugation reactions continues to grow for cell specific targeting and dual therapeutic plus diagnostic medical applications. This necessitates the development of new bioconjugation chemistries, in-flow synthetic and analytical methods. With this goal, continuous flow bioconjugations were readily achieved with short residence times for strained alkyne substituted carbohydrate and therapeutic peptide biomolecules in reaction with azide and tetrazine substituted fluorophores. The strained alkyne substrates included substituted 2-amino-2-deoxy-α-D-glucopyranose, and the linear and cyclic peptide sequences QIRQQPRDPPTETLELEVSPDPAS-OH and c(RGDfK) respectively. The catalyst and reagent-free inverse electron demand tetrazine cycloadditions proved more favourable than the azide 1,3-dipolar cycloadditions. Reaction completion was achieved with residence times of 5 min at 40 °C for tetrazine versus 10 min at 80 °C for azide cycloadditions. The use of a fluorogenic tetrazine fluorophore, in a glass channelled reactor chip, allowed for intra-chip reaction monitoring by recording fluorescence intensities at various positions throughout the chip. As the Diels-Alder reactions proceeded through the chip, the fluorescence intensity increased accordingly in real-time. The application of continuous flow fluorogenic bioconjugations could offer an efficient translational access to theranostic agents.  相似文献   

8.
A new design for fluorescence probes of esterase activity that features a carboxylate‐side pro‐fluorophore is demonstrated with boron dipyrromethene (BODIPY)‐based probes 1 a and 1 b . Because the design relies on the enzyme‐catalyzed hydrolysis of an ester group that is not electronically activated, these probes exhibit a stability to background hydrolysis that is far superior to classical alcohol‐side profluorophore‐based probes, large signal‐to‐noise ratios, reduced sensitivity to pH variations, and high enzymatic reactivity. The utility of probe 1 a was established with a real‐time fluorescence imaging experiment of endogenous esterase activity that does not require washing of the extracellular medium.  相似文献   

9.
The synthesis of four clickable sydnone-heptamethine cyanine derivatives is described in this article. The synthetic route is based on a palladium-cross coupling reactions of sydnone boronates affording the desired sydnone-cyanine conjugates in only five steps. These compounds were shown to react smoothly with cyclooctynes to form the corresponding pyrazoles clicked products quantitatively at room temperature and with rate constants up to 18 m −1 ⋅ s−1, affording interesting new tools for biorthogonal fluorescent labelling of (bio)molecules. Fluorescence properties of both sydnone- and pyrazole-cyanines are described, as well.  相似文献   

10.
Monoamine oxidases have two functionally distinct but structurally similar isoforms (MAO‐A and MAO‐B). The ability to differentiate them by using fluorescence detection/imaging technology is of significant biological relevance, but highly challenging with available chemical tools. Herein, we report the first MAO‐A‐specific two‐photon fluorogenic probe ( F1 ), capable of selective imaging of endogenous MAO‐A enzymatic activities from a variety of biological samples, including MAO‐A‐expressing neuronal SY‐SY5Y cells, the brain of tumor‐bearing mice and human Glioma tissues by using two‐photon fluorescence microscopy (TPFM) with minimal cytotoxicity.  相似文献   

11.
Combining nanotechnology and bioorthogonal chemistry for theranostic strategies offers the possibility to develop next generation nanomedicines. These materials are thought to increase therapeutic outcome and improve current cancer management. Due to their size, nanomedicines target tumors passively. Thus, they can be used for drug delivery purposes. Bioorthogonal chemistry allows for a pretargeting approach. Higher target-to-background drug accumulation ratios can be achieved. Pretargeting can also be used to induce internalization processes or trigger controlled drug release. Colloidal gold nanoparticles (AuNPs) have attracted widespread interest as drug delivery vectors within the last decades. Here, we demonstrate for the first time the possibility to successfully ligate AuNPs in vivo to pretargeted monoclonal antibodies. We believe that this possibility will facilitate the development of AuNPs for clinical use and ultimately, improve state-of-the-art patient care.  相似文献   

12.
The pretargeting strategy has recently emerged in order to overcome the limitations of direct targeting, mainly in the field of radioimmunotherapy (RIT). This strategy is directly dependent on chemical reactions, namely bioorthogonal reactions, which have been developed for their ability to occur under physiological conditions. The Staudinger ligation, the copper catalyzed azide-alkyne cycloaddition (CuAAC) and the strain-promoted [3 + 2] azide–alkyne cycloaddition (SPAAC) were the first bioorthogonal reactions introduced in the literature. However, due to their incomplete biocompatibility and slow kinetics, the inverse-electron demand Diels-Alder (IEDDA) reaction was advanced in 2008 by Blackman et al. as an optimal bioorthogonal reaction. The IEDDA is the fastest bioorthogonal reaction known so far. Its biocompatibility and ideal kinetics are very appealing for pretargeting applications. The use of a trans-cyclooctene (TCO) and a tetrazine (Tz) in the reaction encouraged researchers to study them deeply. It was found that both reagents are sensitive to acidic or basic conditions. Furthermore, TCO is photosensitive and can be isomerized to its cis-conformation via a radical catalyzed reaction. Unfortunately, the cis-conformer is significantly less reactive toward tetrazine than the trans-conformation. Therefore, extensive research has been carried out to optimize both click reagents and to employ the IEDDA bioorthogonal reaction in biomedical applications.  相似文献   

13.
In situ quantification of the conjugation efficiency of azide-terminated synthetic polymers/imaging probes and thiol-functionalized antibodies/proteins/peptides was enabled by a doubly caged profluorescent and heterodifunctional core molecule C1 as a self-sorting bridging unit. Orthogonal dual “click” coupling of C1 with azide- and thiol-functionalized precursors led to highly fluorescent bioconjugates, whereas single-click products remained essentially nonfluorescent. Integration with FRET processes was also possible. For the construction of antibody–probe conjugates from an anti-carcinoembryonic antigen and a quinone-caged profluorescent naphthalimide derivative, the dual “click” coupling process with C1 was monitored on the basis of the emission turn-on of C1 , whereas prominent changes in FRET ratios occurred for antibody–imaging-probe conjugates when specifically triggered by quinone oxidoreductase (NQO1), which is overexpressed in various types of cancer cells.  相似文献   

14.
A fluorescent protein‐labeling strategy was developed in which a protein of interest (POI) is genetically tagged with a short peptide sequence presenting two Cys residues that can selectively react with synthetic fluorogenic reagents. These fluorogens comprise a fluorophore and two maleimide groups that quench fluorescence until they both undergo thiol addition during the labeling reaction. Novel fluorogens were prepared and kinetically characterized to demonstrate the importance of a methoxy substituent on the maleimide in suppressing reactivity with glutathione, an intracellular thiol, while maintaining reactivity with the dithiol tag. This system allows the rapid and specific labeling of intracellular POIs.  相似文献   

15.
Transaldolase catalyzes the transfer of dihydroxyacetone from, for example, fructose 6-phosphate to erythrose 4-phosphate. As a potential probe for assaying fluorescent transaldolase, 6-O-coumarinyl-fructose (1) was prepared in six steps from D-fructose. The corresponding 6-O-coumarinyl-5-deoxy derivative 2 was prepared stereoselectively from acrolein and tert-butyl acetate by a chemoenzymatic route involving Amano PS lipase for the kinetic resolution of tert-butyl 3-hydroxypent-4-enoate (7) and E. coli transketolase for assembly of the final product. The corresponding stereoisomer related to D-tagatose was obtained by a chemical synthesis starting from D-ribose. Indeed, transaldolases catalyze the retro-aldolization of substrate 1 to give dihydroxyacetone and 3-O-coumarinyl-glyceraldehyde. The latter primary product undergoes a beta-elimination in the presence of bovine serum albumin (BSA) to give the strongly fluorescent product umbelliferone. A similar reaction is obtained with the 5-deoxy analogue 2, but there is almost no reaction with its stereoisomer 3. The stereoselectivity of transaldolases can be readily measured by the relative rates of fluorescence development in the presence of the latter pair of diastereomeric substrates.  相似文献   

16.
A general procedure for the assembly of hetero‐bifunctional cubic silsesquioxanes with diverse functionality and a perfectly controlled distribution of functional groups on the inorganic framework has been developed. The method is based on a two‐step sequence of mono‐ and hepta‐functionalization through the ligand‐accelerated copper(I)‐catalyzed azide–alkyne cycloaddition of a readily available octaazido cubic silsesquioxane. The stoichiometry of the reactants and the law of binomial distribution essentially determine the selectivity of the key monofunctionalization reaction when a copper catalyst with strong donor ligands is used. The methodology has been applied to the preparation of a set of bifunctional nano‐building‐blocks with orthogonal reactivity for the controlled assembly of precisely defined hybrid nanomaterials and a fluorescent multivalent probe for application in targeted cell‐imaging. The inorganic cage provides an improved photostability to the covalently attached dye as well as a convenient framework for the 3D multivalent display of the pendant epitopes. Thus, fluorescent bioprobes based on well‐defined cubic silsesquioxanes offer interesting advantages over more conventional fully organic analogues and ill‐defined hybrid nanoparticles and promise to become powerful tools for the study of cell biology and for biomedical applications.  相似文献   

17.
Recent developments in fluorescence microscopy call for novel small‐molecule‐based labels with multiple functionalities to satisfy different experimental requirements. A current limitation in the advancement of live‐cell single‐molecule localization microscopy is the high excitation power required to induce blinking. This is in marked contrast to the minimal phototoxicity required in live‐cell experiments. At the same time, quality of super‐resolution imaging depends on high label specificity, making removal of excess dye essential. Approaching both hurdles, we present the design and synthesis of a small‐molecule label comprising both fluorogenic and self‐blinking features. Bioorthogonal click chemistry ensures fast and highly selective attachment onto a variety of biomolecular targets. Along with spectroscopic characterization, we demonstrate that the probe improves quality and conditions for regular and single‐molecule localization microscopy on live‐cell samples.  相似文献   

18.
Reagents to visualize and localize neuraminidase activity would be valuable probes to study the role of neuraminidases in normal cellular processes as well as during viral infections or cancer development. Herein, a new class of neuraminidase‐imaging probes that function as proximity ligation reagents by releasing a highly reactive fluorophore that tags nearby cellular material is described. It is further demonstrated that it is possible to create an influenza virus‐specific reagent, which can specifically detect influenza virus infections in mammalian cells. These reagents have potential use as specific histological probes independent of viral antigenicity and, therefore, offer some advantages over commonly used anti‐neuraminidase antibodies.  相似文献   

19.
Current methods for the detection of Mycobacterium tuberculosis (Mtb) are either time consuming or require expensive instruments and are thus are not suitable for point‐of‐care diagnosis. The design, synthesis, and evaluation of fluorogenic probes with high specificity for BlaC, a biomarker expressed by Mtb, are described. The fluorogenic probe CDG‐3 is based on cephalosporin with substitutions at the 2 and 7 positions and it demonstrates over 120 000‐fold selectivity for BlaC over TEM‐1 Bla, the most common β‐lactamase. CDG‐3 can detect 10 colony‐forming units of the attenuated Mycobacterium bovis strain BCG in human sputum in the presence of high levels of contaminating β‐lactamases expressed by other clinically prevalent bacterial strains. In a trial with 50 clinical samples, CDG‐3 detected tuberculosis with 90 % sensitivity and 73 % specificity relative to Mtb culture within one hour, thus demonstrating its potential as a low‐cost point‐of‐care test for use in resource‐limited areas.  相似文献   

20.
We report two methods that have allowed the attachment of glucose, mannose and lactose to one or both of the cyclopentadienyl rings of ferrocene. The resulting ferrocene–carbohydrate conjugates were synthesised by the reaction of thioglycosides with ferrocenemethanol and 1,1′‐ferrocenedimethanol in acidic media. A second method based on the regiospecific copper(I)‐catalysed cycloaddition of propargyl glycoside, azidomethyl and bis(azidomethyl)ferrocene as well as azidoethyl glycoside and ethynylferrocene was also used and led to the synthesis of 1,2,3‐triazole‐containing glycoconjugates. The electrochemical behaviour of the synthesised glycoconjugates was investigated. In addition, their binding interactions with β‐cyclodextrin were studied by means of NMR spectroscopy, isothermal titration calorimetry, and cyclic and differential pulse voltammetric experiments. These techniques allowed the determination of the thermodynamic parameters of the complexes, the stability constants for the complexes formed with both the neutral and the oxidised states of the ferrocenyl glycoconjugates, the mode of inclusion and the diffusion coefficients for both the glycoconjugates and the complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号