首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the corona-needle ionizer was designed, constructed, and characterized. Experimental characterizations of the electrostatic discharge in terms of current–voltage relationships of the corona ionizer, including the effects of discharge electrode cone angle and air flow rate were presented. It was found that the charging current and ion concentration in the charging zone increased monotonically with corona voltage. Conversely, discharge currents decreased with increasing angle of the needle cone. The negative corona was found to have higher current than the positive corona. At higher air flow rates, the ion current and concentration were found to be relatively high for the same corona voltage. The effect of air flow rate was more pronounced than the corona voltage. It was also shown that the ion penetration through the ionizer decreased with increasing corona voltage, and increased with increasing air flow rate. The highest ion penetration through the ionizer of the 10° needle cone angle was found to be about 93.7 and 7.7% for positive and negative coronas, respectively. The highest ion penetration for the needle cone angle of 20° was found to be 96.6 and 6.1% for positive and negative coronas, respectively.  相似文献   

2.
This paper aims at characterizing the behavior of dc corona discharge in wire-to-plane electrostatic precipitators (ESPs) as influenced by the relative humidity (RH) of the inlet air. The current–voltage characteristics and time evolution of the current are analyzed. Experimental results show that discharge current is strongly affected by the RH level of the inlet air. For instance, the time-averaged current is lower at higher RH for a given voltage, except when RH = 99%. Time evolution of the discharge current is affected by the humidity especially in the case of negative corona.  相似文献   

3.
A cylindrical triode charger for unipolar diffusion charging of aerosol particles was designed, constructed, and evaluated. The corona discharge characteristics were studied in this cylindrical triode charger. For the process the current–voltage characteristics were determined, as were the ion number concentration, the nit product, and the mean charge per particle as a function of particle diameter. The discharge and charging currents, and ion number concentration in the charging zone of the charger increased monotonically with corona voltage. The negative corona had a higher current than the positive corona. At the same corona voltage, the ion number concentration in the discharge zone was larger than the charging current for positive and negative coronas, with values of about 197 and 32 times and 645 and 99 times for the ion-driving voltages of 0 and 310 V, respectively. The average ion penetration for positive and negative coronas was 0.64 and 0.19% and 3.62 and 1.93% for the ion-driving voltages of 0 V and 310 V, respectively. The higher flow rate, shorter residence time, gave a lower Nit product. By calculation 14% of charged particles of 10 nm in diameter were lost to the outer cylinder because of the electrostatic field effect. The charger does not use a sheath of air flow along the walls or the perforated screen opening, it has low diffusion and space charge losses due to the short column charging zone, and is a low complexity and inexpensive system. It worked as well as more sophisticated and expensive commercially available chargers.  相似文献   

4.
In this paper, the corona discharge characterization in terms of current–voltage relationships of a unipolar cylindrical tri-axial charger on the effects of the corona wire diameter and length have been experimentally studied and discussed. A commercial computational fluid dynamics software package, COMSOL Multiphysics™, was used to predict the electric field distribution in the ion generation and charging zones of the charger and the ion penetration through the perforated screen opening on the inner electrode of the charger. It was found from experimental results that both positive and negative charging currents in the charging zone of the charger increased with increasing corona and ion-driving voltages. At the same corona and ion-driving voltages, both positive and negative coronas were decreased with increasing diameter of the corona-wire. Compared with the corona-wire of 22 mm in length, the magnitude of both positive and negative charging currents were markedly higher for corona-wire of 11 mm in length at the same corona voltage. It was found that the charging currents for negative coronas were about 1.2 times higher than those positive coronas at the same corona and ion-driving voltages. Numerical results of the electric field distribution and the ion and charged particles migrations in the discharge and charging zones of the charger is correlated to have the same direction with the experimental results of the current–voltage relationships. Also, this can be used to guidance in describing the electric field distribution and the behavior of ion and charged particle trajectories that cannot be seen from experiments in order to improve the applicably design and refinement of a unipolar cylindrical tri-axial charger.  相似文献   

5.
The experimental efficiency was numerically and experimentally studied for collecting negative and positive ions in a coaxial cylindrical electrostatic collector for a mini-volume electrical PM detector. The commercial computational fluid dynamics software package COMSOL Multiphysics™ was used to predict the behaviors of the flow and electric fields as well as the particle trajectories in the collecting zone of the ion collector. In the experiment, the ions were generated by a corona-needle ionizer with concentrations greater than 1013 ions/m3, the positively and negatively applied voltages at the inner electrode ranged from 0 to 45 V and the ion flow rates ranged from 1 to 5 L/min. For these ion flow rates, 1–5 L/min, the ion precipitates due to space charge and diffusion effects ranged from 92 to 97 % for positive ions and 91–97 % for negative ions. The total collection efficiency of the collector increased to 100% at collection voltages larger than 5, 20 and 40 V respectively for the ion flow rates of 1, 3 and 5 L/min for both positive and negative ions. Numerical calculation results of the ion trajectory in the collecting zone of the collector; showed good agreement with the experimental results of the total collection efficiency and can be used to support the bettering of designing in order to refine an ion collector after the charger or ionizer in a mini-volume electrical aerosol detector. Finally, this shows that this ion collector was proven to be particularly useful as an electrostatic collector for positive and negative ions after the charger or ionizer in a mini-volume electrical aerosol detector.  相似文献   

6.
Three types of unipolar chargers (parallel multi-electrodes, single electrode, and single electrode with compact size) using the soft X-ray were constructed and their charging performance was evaluated by measuring positive, negative, and neutral fractions of size-resolved ultrafine particles (20–100 nm) with the Tandem Differential Mobility Analyzer (TDMA) technique. The unipolar charger with a single electrode and compact size showed the highest charge fraction with least particle loss probably due to lower electrostatic loss of ions among tested chargers. With positive voltage applied to electrode to remove negative ions, we found that the positively charged particles were 43, 52, 62, 69, and 75% for 20, 30, 50, 70, and 100-nm particles, respectively, and a few particles were negatively charged although their fraction increased with size (1, 2, 4, 5, and 6% for 20, 30, 50, 70, and 100-nm particles, respectively). The positive charge fractions were about three times higher than the values estimated theoretically from a bipolar charger. Also, based on comparison of current data with previously reported values using corona discharge unipolar charger, the soft X-ray charger showed better performance in terms of charging efficiency and penetration for particles (NaCl) currently tested in the particle size range of 20–100 nm.  相似文献   

7.
This paper analyses corona discharge in ambient air with laboratory-scaled wire-to-plate electrostatic precipitator (WPESP). The electric field is behind the electro hydrodynamic (EHD) flow in air. Its measurements provide complementary results for the corona discharge study because the classical theory based on the current and voltage data is unsatisfactory. Taking into account the dynamic air flow velocity is perpendicular to the active wires, measurement method of the positive and negative DC corona current density and electric field, has been introduced. It has been shown also that the dynamic air flow velocity modifies the current density and the electric field distributions on the planes surfaces of the WPESP.  相似文献   

8.
A new unipolar charger for aerosol nanoparticles has been developed. In this twin Hewitt charger two corona discharge zones are connected by a charging zone where the nanoparticle aerosol flows. Ions move into the charging zone alternating from each corona discharging zone by means of a square-wave voltage. The operation parameters of the device have been experimentally investigated at standard conditions with the goal to optimize the extrinsic charging efficiency in N2 carrier gas. It has been found that there exists an optimal length of the charging channel for each gas flow rate through the charger which minimizes losses of charged particles and at the same time having a sufficient large n iont-product. Extrinsic charging efficiencies of some 30% for particles with a diameter of 10 nm are obtained.  相似文献   

9.
Corona discharge from a fine water droplet always involves deformation of the droplet shape or Taylor-cone formation, emission of fine water jets or disruption of droplet. Therefore, corona discharge from a water droplet always manifests complicated aspects. In addition, disruption of Taylor cone simultaneously affects not only discharge current but also motion of water droplet. To confirm corona discharge phenomena from a water droplet protruded from a tip of a metal capillary tube with a diameter of 1 mm, negative corona discharge was investigated by using a water droplet located at a tip of grounded rod electrode facing a ring electrode with positive dc voltage superimposed by ac one. Since the droplet has inherent resonant vibrating frequency defined by the size or volume, the volume of water droplet was adjusted at 20 nL where the corresponding resonant frequency was 500 Hz. The period of the event of successive corona discharge is exactly consistent with resonant frequency defined by the size of the water droplet. As a result, corona pulse trains with a definite duration appeared intermittently corresponding to its resonant vibration. When dc voltage superimposed by ac voltage with resonant frequency of 500 Hz was applied to the water droplet, corona pulse trains appeared at the period corresponding to the frequency. The maximum value of corona current reasonably increased with the applied voltage. Even when the frequency of ac field superimposed on dc field was varied from the resonant frequency, corona pulse trains occur corresponding to not only the superimposed field frequency but also resonant frequency.  相似文献   

10.
脉冲电晕放电过程中OH自由基等活性基团的空间分布特性对燃煤烟气污染物的氧化脱除具有重要作用。为了探索脉冲电晕放电污染物控制技术的机理,采用激光诱导荧光法检测线板式反应器内部脉冲电晕放电过程中OH自由基的空间二维分布特性,主要研究了不同相对湿度和含氧量对OH自由基空间二维分布特性的影响。实验表明,脉冲电晕放电过程中OH自由基主要存在于线电极下方的区域中,并以线电极为中心面向板电极呈现扇形分布,并且其扇形分布区域的纵向长度和横向宽度的最大值均小于1 cm;相对湿度的增大有利于OH自由基的生成,促进OH自由基空间二维分布区域面积的扩大,当相对湿度为65%时OH自由基的空间二维分布区域面积达到最大值;当含氧量为2%时最有利于OH自由基的生成,并且OH自由基的空间二维分布区域面积达到最大值,当含氧量超过15%时对OH自由基的生成及其空间二维分布主要起抑制作用。同时,相对湿度和含氧量的增加均提高了激发态OH自由基中猝灭部分所占的比重,从而降低了OH自由基的荧光产率,其中含氧量对OH自由基荧光产率和OH自由基空间二维分布的影响作用大于相对湿度。  相似文献   

11.
The effect of corona wire temperature on the ozone generation in the positive dc corona electrostatic precipitator is studied experimentally. The external heating of the corona wire can suppress the ozone generation. In this study, nichrome and two kinds of silver-based wires 0.1 mm diameter were tested as discharges electrodes. The nichrome corona wire heating shows a well-known monotonic decreasing the rate of ozone production. In the case of the tested silver-based wires the rate of ozone production decreases nonlinearly and passes through a local minimum in the range from 35 to 55 °C with increasing the wire temperature. At the wire temperature about 46 °C ozone generation by positive dc corona discharge is decreased by 53% with Ag:Mn = 0.85:0.15 wire and by 25% with Ag:Ni = 0.7:0.3 wire as compared to the same wire at 26 °C. Under these conditions the corona wire heating increases slightly the corona current and speed of airflow.  相似文献   

12.
A novel aerosol charger has been developed, which has high efficiency and high throughput especially for nanometer particles in the size range of 3–50nm. Unipolar charging with high ion concentration and long charging time is used to obtain the high charging efficiency. High throughput is achieved by reducing particle loss within the charger. This is accomplished by directing ion flow and aerosol flow in the same direction and by the use of sheath air flow. The charger configuration is of a longitudinal design – the direction of aerosol stream and ion stream are flowing parallel along the longitudinal axis of the charger. The charger consists of four sections: the inlet zone, the ion production zone, the unipolar charging zone, and the exit zone. In the inlet and ion production zones, unipolar ions are generated using Po210 radioactive sources with an electric field designed to separate the positive and negative ions, and to focus the selected unipolar ions into the core region of the charger. The ions with the selected polarity is then attracted to the charging zone by an uniform electric field created by a series of ring electrodes applied with a linear ramped voltage. Aerosol entering the charger is sheathed with clean gas flow in order to keep the aerosol in the core region. A novel exit design with a reversed electric field is incorporated in order to minimize the charged particles loss. The performance of the charger is first evaluated using computer simulation and then constructed for experimental validation. Experiment data have demonstrated that the charger achieves 90% and 95% charged-particles penetration efficiency and with 22% and 48% extrinsic charging efficiency at 3 and 5nm particle sizes, respectively. These performance data represent significant improvement, over a factor of 10, compared with the existing chargers.  相似文献   

13.
In a multi-pin-to-multi-cupped-plane DC negative corona discharge configuration, a stable and diffuse glow discharge controlled by a fast airflow was obtained. This paper investigates the effect of the air gas flow velocity and the electrode structure on the discharge mode transition and the stabilization of the glow discharge by means of electric measurements and emission records. The stabilization mechanism of the glow discharge is discussed. The maximum glow discharge current reached 3.9 mA and the average current density was about 0.7 mA/cm2.  相似文献   

14.
Experimental results concerning the influence of the homogeneous magnetic field on the positive corona discharge between coaxial cylinders are presented. The change of the corona current due to axial magnetic field 0·6 T was observable at pressures below 4000 Pa in dry air. The influence on the initial and spark voltages has been investigated as well.  相似文献   

15.
利用发射光谱技术在大气压下测量了空气中多针对板负直流电晕放电和正电晕流光放电产生的O(3p5 P→3s 5 S02777.4nm)活性原子发射光谱。在负电晕放电中,研究了放电功率、电极间距、N2含量和相对湿度等因素对O活性原子产生过程的影响;在正电晕流光放电阶段,研究了O活性原子相对密度在放电反应空间的分布特点。结果表明:O活性原子产量随放电功率的增加而增大,随电极间距增大而减少,随相对湿度和氮气含量的增加,其产量先增大后减少;O活性原子相对密度沿针尖轴向呈先增大后减小的趋势。  相似文献   

16.
To study the characteristics of DC negative corona discharge in a wire-cylinder configuration at an ambient temperature range of 350–850 °C, the IV characteristics and the current composition are analyzed under different conditions. A simple method is proposed to determine the DC corona onset threshold voltage. At high ambient temperatures, in the DC negative corona discharge gap, some electrons are not attached to the electronegative gas molecules and move to the anode tube. Thus, these electrons form an electron current, which may account for most of the total discharging current. The ratio of the electron current to the total discharging current increases with increasing temperature. In a mixture of O2 and N2 and a mixture of CO2 and N2, the ratio of electron current increases with increasing N2 content in the mixtures. The cathode material has little influence on the corona discharge characteristics at high ambient temperatures.  相似文献   

17.
利用氩气作为工作气体,采用正弦电压驱动沿面型等离子体喷枪,在大气压空气环境中产生了均匀的等离子体羽。电学和光学测量结果表明,等离子体羽放电只存在于外加峰值电压的正半周期,并且正半周期的放电脉冲个数随气体流量的增加而增加。通过对正半周期不同位置的发光脉冲信号进行比较,发现等离子体羽均按子弹形式传播,其中每一个发光脉冲均对应一次等离子体子弹传播过程。通过对比放电电流和等离子体羽的发光信号,发现等离子体羽的发光脉冲滞后于放电电流脉冲,且该延迟时间基本服从正态分布。该延迟时间随着外加电压峰值及气体流量的增大而减小。利用光纤测温仪测量了等离子体羽的气体温度,发现气体温度随外加峰值电压的增大而升高,随工作气体流量的增大而降低。通过分析放电过程,对上述现象进行了定性解释。  相似文献   

18.
The flow characteristics of a corona jet, which is produced from a single needle electrode positioned at the centerline of a circular tube fitted with a grounded stainless-steel nozzle at one end of the tube, is experimentally evaluated. Six nozzles with two diameter ratios and three taper angles are evaluated for their effectiveness in accelerating the jet produced by corona discharge with positive polarity. To determine the maximum jet velocity and volume flow rate, experiments have been conducted at a voltage ranging from corona onset (5 kV) to sparkover (approximately 12.5 kV) at an increment of 2.5 kV. The results show that the jet velocity increases with the applied voltage. The maximum velocity occurs at the center line but its value decreases as the jet expands downstream. In addition, the results show that a nozzle with a smaller diameter ratio does not always perform the best in accelerating the flow or producing the maximum volume flow rate. The nozzle's taper angle further accentuates the result produced by the diameter ratio. The implications from the present results for actual applications are provided.  相似文献   

19.
In the paper, the influences of water flux on both discharge current and onset voltage were studied. Both charging and capturing particles of atomizing corona discharges were investigated when the magnetic field was used or not. The charge number of droplets and their sizes were calculated after some parameters were measured by Millikan oil drop instrument. In addition, the capturing ability of atomizing corona discharge pre-charger with magnetic field was compared with the traditional pre-charger. Eventually, the charging mechanism of atomizing corona discharge with magnetic field was analyzed through the above-mentioned experimentation and comparison. The result shows that the smallest onset voltage will appear with water flow increase in the atomizing corona discharge, and that the ion concentration between electrodes is the highest in the atomizing corona discharge charger with magnetic field than any other pre-charger, which is conducive for charging dust particles. Hence the new pre-charging technique is promising for capturing fine aerosol particles in electrostatic precipitators.  相似文献   

20.
Results of an experimental study of a cylindrical air inlet designed for high flight speeds on the basis of plane flows are reported. For an air inlet intended for Mach number M = 4, the flow-rate characteristics at M = 2.85, 3.83, and 4.95 for angles of attack ranging from 0 to 9 degrees have been measured. The results of tests have shown that at free-stream Mach number M = 3.83, close to the design Mach number, the mass rate of the air flow captured by the air inlet was 96 % of its design value, and this rate increased to 99 % as the Mach number was increased to 4.95. At a lower, in comparison with the design value, free-stream Mach number, M = 2.85, the mass rate of the air flow captured by the inlet installed under zero angle of attack has decreased to 68 %. For all the examined Mach numbers, an increase in the angle of attack from 0 to 9 degrees resulted in an 8–14 % decrease of the mass rate of inlet-captured air flow. For comparison, numerical calculation of the air-inlet flow at Mach number M = 3.83 was performed. The obtained data were found to be in a qualitative agreement with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号