首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the current research is to develop ZnO-Manjistha extract (ZnO-MJE) nanoparticles (NPs) and to investigate their transdermal delivery as well as antimicrobial and antioxidant activity. The optimized formulation was further evaluated based on different parameters. The ZnO-MJE-NPs were prepared by mixing 10 mM ZnSO4·7H2O and 0.8% w/v NaOH in distilled water. To the above, a solution of 10 mL MJE (10 mg) in 50 mL of zinc sulfate was added. Box–Behnken design (Design-Expert software 12.0.1.0) was used for the optimization of ZnO-MJE-NP formulations. The ZnO-MJE-NPs were evaluated for their physicochemical characterization, in vitro release activity, ex vivo permeation across rat skin, antimicrobial activity using sterilized agar media, and antioxidant activity by the DPPH free radical method. The optimized ZnO-MJE-NP formulation (F13) showed a particle size of 257.1 ± 0.76 nm, PDI value of 0.289 ± 0.003, and entrapment efficiency of 79 ± 0.33%. Drug release kinetic models showed that the formulation followed the Korsmeyer–Peppas model with a drug release of 34.50 ± 2.56 at pH 7.4 in 24 h. In ex vivo studies ZnO-MJE-NPs-opt permeation was 63.26%. The antibacterial activity was found to be enhanced in ZnO-MJE-NPs-opt and antioxidant activity was found to be highest (93.14 ± 4.05%) at 100 µg/mL concentrations. The ZnO-MJE-NPs-opt formulation showed prolonged release of the MJE and intensified permeation. Moreover, the formulation was found to show significantly (p < 0.05) better antimicrobial and antioxidant activity as compared to conventional suspension formulations.  相似文献   

2.
Despite its proven efficacy in diverse metabolic disorders, quercetin (QU) for clinical use is still limited because of its low bioavailability. D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) is approved as a safe pharmaceutical adjuvant with marked antioxidant and anti-inflammatory activities. In the current study, several QU-loaded self-nanoemulsifying drug delivery systems (SNEDDS) were investigated to improve QU bioavailability. A reversed phase high performance liquid chromatography (RP-HPLC) method was developed, for the first time, as a simple and sensitive technique for pharmacokinetic studies of QU in the presence of TPGS SNEDDS formula in rat plasma. The analyses were performed on a Xterra C18 column (4.6 × 100 mm, 5 µm) and UV detection at 280 nm. The analytes were separated by a gradient system of methanol and phosphate buffer of pH 3. The developed RP-HPLC method showed low limit of detection (LODs) of 7.65 and 22.09 ng/mL and LOQs of 23.19 and 66.96 ng/mL for QU and TPGS, respectively, which allowed their determination in real rat plasma samples. The method was linear over a wide range, (30–10,000) and (100–10,000) ng/mL for QU and TPGS, respectively. The selected SNEDDS formula, containing 50% w/w TPGS, 30% polyethylene glycol 200 (PEG 200), and 20% w/w pumpkin seed oil (PSO), showed a globule size of 320 nm and −28.6 mV zeta potential. Results of the pharmacokinetic studies showed 149.8% improvement in bioavailability of QU in SNEDDS relative to its suspension. The developed HPLC method proved to be simple and sensitive for QU and TPGS simultaneous determination in rat plasma after oral administration of the new SNEDDS formula.  相似文献   

3.
In order to improve the membrane lipophilicity and the affinity towards the environment of lipid bilayers, squalene (SQ) could be conjugated to phospholipids in the formation of liposomes. The effect of membrane composition and concentrations on the degradation of liposomes prepared via the extrusion method was investigated. Liposomes were prepared using a mixture of SQ, cholesterol (CH) and Tween80 (TW80). Based on the optimal conditions, liposome batches were prepared in the absence and presence of SQ. Their physicochemical and stability behavior were evaluated as a function of liposome constituent. From the optimization study, the liposomal formulation containing 5% (w/w) mixed soy lecithin (ML), 0.5% (w/w) SQ, 0.3% (w/w) CH and 0.75% (w/w) TW80 had optimal physicochemical properties and displayed a unilamellar structure. Liposome prepared using the optimal formulation had a low particle size (158.31 ± 2.96 nm) and acceptable %increase in the particle size (15.09% ± 3.76%) and %trolox equivalent antioxidant capacity (%TEAC) loss (35.69% ± 0.72%) against UV light treatment (280–320 nm) for 6 h. The interesting outcome of this research was the association of naturally occurring substance SQ for size reduction without the extra input of energy or mechanical procedures, and improvement of vesicle stability and antioxidant activity of ML-based liposome. This study also demonstrated that the presence of SQ in the membrane might increase the acyl chain dynamics and decrease the viscosity of the dispersion, thereby limiting long-term stability of the liposome.  相似文献   

4.
The study of bioactive molecules of natural origin is a focus of current research. Thymus algeriensis and Artemisia herba-alba are two medicinal plants widely used by the Moroccan population in the traditional treatment of several pathologies linked to inflammation. This study aimed to evaluate the single and combined antioxidant, anti-inflammatory and analgesic effects of the essential oils extracted from these two medicinal plants, and also their potential toxicity. Essential oils were extracted using hydro-distillation in a Clevenger-type apparatus. The antioxidant activity was evaluated by two methods: the scavenging of the free radical DPPH, and the reduction in iron. Anti-inflammatory activity was evaluated by evaluating the edema development induced by carrageenan injecting, while the analgesic power was evaluated according to the number of abdominal contortions induced by the intraperitoneal injection of acetic acid (0.7%). The acute oral toxicity was performed to assess the potential toxicity of the studied EOs, followed by an analysis of the blood biochemical parameters. The results of the two antioxidant tests indicated that our extract mixture exhibits good iron reduction capacity and very interesting DPPH free radical scavenging power, with an IC50 of around 4.38 ± 0.98 μg/mL higher than that of the benchmark antioxidant, BHT. The anti-inflammatory test demonstrated that the mixture administered orally at a dose of 150 mg/kg has a better activity, exceeding that of 1% Diclofenac, with a percentage of maximum inhibition of the edema of 89.99 ± 4.08. The number of cramps in the mice treated with the mixture at a dose of 150 mg/kg is significantly lower (29.80 ± 1.92) than those of the group treated with Tramadol (42.00 ± 2.70), respectively. The toxicity results show no signs of toxicity with an LD50 greater than 150 mg/Kg. These interesting results show that the two plants’ EOs had an important anti-inflammatory, analgesic, and antioxidant activity, and also a powerful synergistic effect, which encourages further in-depth investigations on their pharmacological proprieties.  相似文献   

5.
The study aimed to develop a new glutathione (GSH) oral formulation to enhance the delivery of GSH and counter the nephrotoxicity of the anticancer drug, cyclophosphamide (CP). A nanostructured lipid carrier glutathione formulation (GSH-NLCs) composed of glutathione (500 mg), stearic and oleic acid (300 mg, each), and Tween® 80 (2%, w/v) was prepared through the emulsification-solvent-evaporation technique, which exhibited a 452.4 ± 33.19 nm spheroidal-sized particulate material with narrow particle size distributions, −38.5 ± 1.4 mV zeta potential, and an entrapment efficiency of 79.8 ± 1.9%. The GSH formulation was orally delivered, and biologically tested to ameliorate the CP-induced renal toxicity in a rat model. Detailed renal morphology, before and after the GSH-NLCs administration, including the histopathological examinations, confirmed the ameliorating effects of the prepared glutathione formulation together with its safe oral delivery. CP-induced oxidative stress, superoxide dismutase depletion, elevation of malondialdehyde levels, depletion of Bcl-2 concentration levels, and upregulated NF-KB levels were observed and were controlled within the recommended and near normal/control levels. Additionally, the inflammatory mediator marker, IL-1β, serum levels were marginally normalized by delivery of the GHS-NLCs formulation. Oral administration of the pure glutathione did not exhibit any ameliorating effects on the renal tissues, which suggested that the pure glutathione is reactive and is chemically transformed during the oral delivery, which affected its pharmacological action at the renal site. The protective effects of the GSH-NLCs formulation through its antioxidant and anti-inflammatory effects suggested its prominent role in containing CP-induced renal toxicity and renal tissue damage, together with the possibility of administrating higher doses of the anticancer drug, cyclophosphamide, to achieve higher and effective anticancer action in combination with the GSH-NLCs formulation.  相似文献   

6.
The mechanism behind the cytoprotective potential of cerium oxide nanoparticles (CeO2 NPs) against cytotoxic nitric oxide (NO) donors and H2O2 is still not clear. Synthesized and characterized CeO2 NPs significantly ameliorated the lipopolysaccharide (LPS)-induced cytokines IL-1β and TNF-α. The main goal of this study was to determine the capacities of NPs regarding signaling effects that could have occurred due to reactive oxygen species (ROS) and/or NO, since NP-induced ROS/NO did not lead to toxicity in HUVE cells. Concentrations that induced 50% cell death (i.e., IC50s) of two NO donors (DETA-NO; 1250 ± 110 µM and sodium nitroprusside (SNP); 950 ± 89 µM) along with the IC50 of H2O2 (120 ± 7 µM) were utilized to evaluate cytoprotective potential and its underlying mechanism. We determined total ROS (as a collective marker of hydrogen peroxide, superoxide radical (O2•−), hydroxyl radical, etc.) by DCFH-DA and used a O2•− specific probe DHE to decipher prominent ROS. The findings revealed that signaling effects mediated mainly by O2•− and/or NO are responsible for the amelioration of toxicity by CeO2 NPs at 100 µg/mL. The unaltered effect on mitochondrial membrane potential (MMP) due to NP exposure and, again, CeO2 NPs-mediated recovery in the loss of MMP due to exogenous NO donors and H2O2 suggested that NP-mediated O2•− production might be extra-mitochondrial. Data on activated glutathione reductase (GR) and unaffected glutathione peroxidase (GPx) activities partially explain the mechanism behind the NP-induced gain in GSH and persistent cytoplasmic ROS. The promoted antioxidant capacity due to non-cytotoxic ROS and/or NO production, rather than inhibition, by CeO2 NP treatment may allow cells to develop the capacity to tolerate exogenously induced toxicity.  相似文献   

7.
Peganum harmala (P. harmala) belongs to the family Zygophyllaceae, and is utilized in the traditional medicinal systems of Pakistan, China, Morocco, Algeria, and Spain to treat several chronic health disorders. The aim of the present study was to identify the chemical constituents and to evaluate the antioxidant, anti-inflammatory, and toxicity effects of P. harmala extracts both in vitro and in vivo. Sequential crude extracts including 100% dichloromethane, 100% methanol, and 70% aqueous methanol were obtained and their antioxidant and anti-inflammatory effects evaluated both in vitro and in vivo. The anti-inflammatory effect of the extract was investigated using the carrageenan-induced paw edema method in mice, whereas the toxicity of the most active extract was evaluated using an acute and subacute toxicity rat model. In addition, we have used the bioassay-guided approach to obtain potent fractions, using solvent–solvent partitioning and reversed phase high performance liquid chromatography from active crude extracts; identification and quantification of compounds from the active fractions was achieved using electrospray ionization mass spectrometry and high performance liquid chromatography techniques. Results revealed that the 100% methanol extract of P. harmala exhibits significant in vitro antioxidant activity in DPPH assay with an IC50 of 49 µg/mL as compared to the standard quercetin with an IC50 of 25.4 µg/mL. The same extract exhibited 63.0% inhibition against serum albumin denaturation as compared to 97% inhibition by the standard diclofenac sodium in an in vitro anti-inflammatory assay, and in vivo anti-inflammatory against carrageenan-induced paw edema (75.14% inhibition) as compared to 86.1% inhibition caused by the standard indomethacin. Furthermore, this extract was not toxic during a 14 day trial of acute toxicity when given at a dose of 3 g/kg, indicating that the lethal dose (LD50) of P. harmala methanol extract was greater than 3 g/kg. P. harmala methanolic fraction 2 obtained using bioassay-guided fractionation showed the presence of quinic acid, peganine, harmol, harmaline, and harmine, confirmed by electrospray ionization mass spectrometry and quantified using external standards on high performance liquid chromatography. Taken all together, the current investigation further confirms the antioxidant, anti-inflammatory, and safety aspects of P. harmala, which justifies its use in folk medicine.  相似文献   

8.
This study investigated the chemical composition, antioxidant and antimicrobial activity of essential oil extracted from Artemisia aragonensis Lam. (EOA). Hydrodistillation was employed to extract EOA. Gas chromatography with flame ionization detection (GC-FID) and gas chromatography-mass spectrometry analyses (GC-MS) were used to determine the phytochemical composition of EOA. Antioxidant potential was examined in vitro by use of three tests: 2.2-diphenyl-1-picrilhidrazil (DPPH), ferric reducing activity power (FRAP) and total antioxidant capacity assay (TAC). Agar diffusion and microdilution bioassays were used to assess antimicrobial activity. GC/MS and GC-FID detected 34 constituents in the studied EOA. The major component was Camphor (24.97%) followed by Borneol (13.20%), 1,8 Cineol (10.88%), and Artemisia alcohol (10.20%). EOA exhibited significant antioxidant activity as measured by DPPH and FRAP assays, with IC50 and EC50 values of 0.034 ± 0.004 and 0.118 ± 0.008 mg/mL, respectively. EOA exhibited total antioxidant capacity of 7.299 ± 1.774 mg EAA/g. EOA exhibited potent antibacterial activity as judged by the low minimum inhibitory concentration (MIC) values against selected clinically-important pathogenic bacteria. MIC values of 6.568 ± 1.033, 5.971 ± 1.033, 7.164 ± 0.0 and 5.375 ± 0.0 μg/mL were observed against S. aureus, B. subtills, E. coli 97 and E. coli 57, respectively. EOA displayed significant antifungal activity against four strains of fungi: F. oxysporum, C. albicans, A. flavus and A. niger with values of 21.50 ± 0.43, 5.31 ± 0.10, 21.50 ± 0.46 and 5.30 ± 0.036 μg/mL, respectively. The results of the current study highlight the importance of EOA as an alternative source of natural antioxidant and antibacterial drugs to combat antibiotic-resistant microbes and free radicals implicated in the inflammatory responses accompanying microbial infection.  相似文献   

9.
The 2,2-diphenyl-1-picrylhydrazyl (DPPH)-reverse phase (RP)-HPLC-diode array detector (DAD) method was tested on standard antioxidants (AOs), i.e., reduced glutathione (GSH), ascorbic acid (vitamin C), and alcoholic extracts of A. podagraria L. An elaborated HPLC procedure enabled the simultaneous measurement of the redox couple DPPH-R (2,2-diphenyl-1-picrylhydrazyl radical)/DPPH-H (2,2-diphenyl-1-picrylhydrazine). Both forms were fully separated (Rs = 2.30, α = 1.65) on a Zorbax Eclipse XDB-C18 column eluted with methanol–water (80:20, v/v) and detected at different wavelengths in the range of 200–600 nm. The absorbance increases of the DPPH-H as well as the DPPH-R peak inhibition were measured at different wavelengths in visible and UV ranges. The chromatographic method was optimized, according to reaction time (slow, fast kinetics), the linearity range of DPPH radical depending on the detection conditions as well as the kind of the investigated antioxidants (reference chemicals and the ground elder prepared from fresh and dry plants). The scavenging capacity was expressed by the use of percentage of peak inhibition and the IC50 parameters. The evaluated extracts displayed antioxidant activity, higher than 20% inhibition against 350 µM DPPH free radical. The results show that extract prepared from dry plants in the ultrasonic bath exhibits the highest antioxidant potential (IC50 = 64.74 ± 0.22 µL/mL).  相似文献   

10.
Paulownia bark is mostly utilized jointly with wood, but the possibility of a separate valorization through the pressurized extraction of bark bioactives has been assessed. Subcritical water extraction and supercritical CO2 extraction are green technologies allowing shorter times than conventional solvent extraction under atmospheric shaken conditions. Subcritical water extraction was carried out at temperatures ranging from 140 to 240 °C and supercritical CO2 extraction was performed at different pressures (10, 20 and 30 MPa), temperatures (35, 45 and 55 °C) and ethanol concentrations (0, 10 and 15% (w/w)). Subcritical water extraction under a non-isothermal operation during heating up to 160 °C (19 min) provided extraction yields up to 30%, and the extracts contained up to 7% total phenolics with an ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) radical scavenging capacity equivalent to 35% the activity of Trolox, whereas at 240 °C, the yield decreased to 20%, but the phenolic content reached 21%, and the antiradical activity was equivalent to 85% of Trolox. Supercritical CO2 extraction at 30 MPa, 45 °C and 30 min reached a global yield of 2% after 180 min of extraction, but the product showed very low antiradical capacity. Gallic acid, vanillic acid, vanillin and apigenin were the major phenolic compounds found in the extracts.  相似文献   

11.
Microalgae contain an abundance of valuable bioactive compounds such as chlorophylls, carotenoids, and phenolics and, consequently, present great commercial interest. The aim of this work is the study and optimization of recovering the aforementioned components from the microalgae species Chlorella vulgaris through conventional extraction in a laboratory-scale apparatus using a “green” mixture of ethanol/water 90/10 v/v. The effect of three operational conditions—namely, temperature (30–60 °C), duration (6–24 h) and solvent-to-biomass ratio (20–90 mLsolv/gbiom), was examined regarding the extracts’ yield (gravimetrically), antioxidant activity, phenolic, chlorophyll, and carotenoid contents (spectrophotometric assays), as well as concentration in key carotenoids, i.e., astaxanthin, lutein, and β-carotene (reversed-phase–high-performance liquid chromatography (RP–HPLC)). For this purpose, a face-centered central composite design (FC-CCD) was employed. Data analysis resulted in the optimal extraction conditions of 30 °C, for 24 h with 37 mLsolv/gbiom and validation of the predicted models led to 15.39% w/w yield, 52.58 mgextr/mgDPPH (IC50) antioxidant activity, total phenolic, chlorophyll, and carotenoid content of 18.23, 53.47 and 9.92 mg/gextr, respectively, and the total sum of key carotenoids equal to 4.12 mg/gextr. The experimental data and predicted results were considered comparable, and consequently, the corresponding regression models were sufficiently reliable for prediction.  相似文献   

12.
Ammodaucus leucotrichus is a spontaneous plant endemic of the North African region. An efficient selective pressurized liquid extraction (PLE) method was optimized to concentrate neuroprotective extracts from A. leucotrichus fruits. Green solvents were tested, namely ethanol and water, within a range of temperatures between 40 to 180 °C. Total carbohydrates and total phenolics were measured in extracts, as well as in vitro antioxidant capacity (DPPH radical scavenging), anticholinesterase (AChE) and anti-inflammatory (LOX) activities. Metabolite profiling was carried out by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight tandem mass spectrometry (UHPLC-ESI-q-TOF-MS/MS), identifying 94 compounds. Multivariate analysis was performed to correlate composition with bioactivity. A remarkable effect of the temperature using water was observed: the higher temperature, the higher extraction yield, the higher total phenolic content, as well as the higher total carbohydrates content. The water extract obtained at 180 °C, 10.34 MPa and 10 min showed meaningful anti-inflammatory (IC50LOX = 39.4 µg/mL) and neuroprotective activities (IC50AChE = 55.6 µg/mL). The Principal Components Analysis (PCA) and the cluster analysis correlated these activities with the presence of carbohydrates and phenolic compounds.  相似文献   

13.
In a project designed to investigate the specific and infraspecific taxa of Matthiola endemic to Sicily (Italy) as new potential sources of bioactive compounds in this work, the infraspecific taxa of Matthiola fruticulosa were studied, namely, subsp. fruticulosa and subsp. coronopifolia. HPLC–PDA/ESI–MS and SPME–GC/MS analyses of hydroalcoholic extracts obtained from the aerial parts of the two subspecies led to the detection of 51 phenolics and 61 volatile components, highlighting a quite different qualitative–quantitative profile. The antioxidant properties of the extracts were explored through in vitro methods: 1,1-diphenyl-2-picrylhydrazyl (DPPH), reducing power and Fe2+ chelating activity assays. The results of the antioxidant tests showed that the extracts possess a different antioxidant ability: particularly, the extract of M. fruticulosa subsp. fruticulosa exhibited higher radical scavenging activity than that of subsp. coronopifolia (IC50 = 1.25 ± 0.02 mg/mL and 2.86 ± 0.05 mg/mL), which in turn displayed better chelating properties (IC50 = 1.49 ± 0.01 mg/mL and 0.63 ± 0.01 mg/mL). Lastly, Artemia salina lethality bioassay was performed for toxicity assessment. The results of the bioassay showed lack of toxicity against brine shrimp larvae for both extracts. The data presented indicate the infraspecific taxa of M. fruticulosa as new and safe sources of antioxidant compounds.  相似文献   

14.
Plant derived fermented beverages have recently gained consumers’ interest, particularly due to their intrinsic functional properties and presence of beneficial microorganisms. Three variants containing 5%, 10%, and 15% (w/w) of sweet blue lupin (Lupinus angustifolius L. cv. “Boregine”) seeds were inoculated with kefir grains and incubated at 25 °C for 24 h. After processing, beverages were stored in refrigerated conditions (6 °C) for 21 days. Changes in microbial population, pH, bioactive compounds (polyphenolics, flavonoids, ascorbic acid), reducing sugars, and free amino acids were estimated. Additionally, viscosity, firmness, color, and free radicals scavenging properties were determined. Results showed that lactic acid bacteria as well as yeast were capable of growing well in the lupin matrix without any supplementation. During the process of refrigeration, the viability of the microorganisms was over the recommended minimum level for kefir products. Hydrolysis of polysaccharides as well as increase of free amino acids was observed. As a result of fermentation, the beverages showed excellent DPPH, ABTS, ·OH, and O2 radicals scavenging activities with a potential when considering diseases associated with oxidative stress. This beverages could be used as a new, non-dairy vehicle for beneficial microflora consumption, especially by vegans and lactose-intolerant consumers.  相似文献   

15.
Anchusa italica Retz has been used for a long time in phytotherapy. The aim of the present study was to determine the antioxidant and antibacterial activities of extracts from the leaves and roots of Anchusa italica Retz. We first determined the content of phenolic compounds and flavonoids using Folin–Ciocalteu reagents and aluminum chloride (AlCl3). The antioxidant activity was determined using three methods: reducing power (FRAP), 2.2-diphenyl-1-picrylhydrazyl (DPPH), total antioxidant capacity (TAC). The antimicrobial activity was investigated against four strains of Escherichia coli, two strains of Klebsiella pneumoniae and coagulase-negative Staphylococcus, and one fungal strain of Candida albicans. The results showed that the root extract was rich in polyphenols (43.29 mg GAE/g extract), while the leave extract was rich in flavonoids (28.88 mg QE/g extract). The FRAP assay showed a strong iron reduction capacity for the root extract (IC50 of 0.11 µg/mL) in comparison to ascorbic acid (IC50 of 0.121 µg/mL). The DPPH test determined an IC50 of 0.11 µg/mL for the root extract and an IC50 of 0.14 µg/mL for the leaf extract. These values are low compared to those for ascorbic acid (IC50 of 0.16 µg/mL) and BHT (IC50 0.20 µg/mL). The TAC values of the leaf and root extracts were 0.51 and 0.98 mg AAE/g extract, respectively. In vitro, the extract showed inhibitory activity against all strains studied, with diameters of zones of inhibition in the range of 11.00–16.00 mm for the root extract and 11.67–14.33 mm for the leaf extract. The minimum inhibitory concentration was recorded for the leaf extract against E. coli (ATB:57), corresponding to 5 mg/mL. Overall, this research indicates that the extracts of Anchusa italica Retz roots and leaves exert significant antioxidant and antibacterial activities, probably because of the high content of flavonoids and polyphenols.  相似文献   

16.
Herein, we report the neuroprotective and antioxidant activity of 1,1′-biphenyl nitrones (BPNs) 1–5 as α-phenyl-N-tert-butylnitrone analogues prepared from commercially available [1,1′-biphenyl]-4-carbaldehyde and [1,1′-biphenyl]-4,4′-dicarbaldehyde. The neuroprotection of BPNs 1-5 has been measured against oligomycin A/rotenone and in an oxygen–glucose deprivation in vitro ischemia model in human neuroblastoma SH-SY5Y cells. Our results indicate that BPNs 1–5 have better neuroprotective and antioxidant properties than α-phenyl-N-tert-butylnitrone (PBN), and they are quite similar to N-acetyl-L-cysteine (NAC), which is a well-known antioxidant agent. Among the nitrones studied, homo-bis-nitrone BPHBN5, bearing two N-tert-Bu radicals at the nitrone motif, has the best neuroprotective capacity (EC50 = 13.16 ± 1.65 and 25.5 ± 3.93 μM, against the reduction in metabolic activity induced by respiratory chain blockers and oxygen–glucose deprivation in an in vitro ischemia model, respectively) as well as anti-necrotic, anti-apoptotic, and antioxidant activities (EC50 = 11.2 ± 3.94 μM), which were measured by its capacity to reduce superoxide production in human neuroblastoma SH-SY5Y cell cultures, followed by mononitrone BPMN3, with one N-Bn radical, and BPMN2, with only one N-tert-Bu substituent. The antioxidant activity of BPNs 1-5 has also been analyzed for their capacity to scavenge hydroxyl free radicals (82% at 100 μM), lipoxygenase inhibition, and the inhibition of lipid peroxidation (68% at 100 μM). Results showed that although the number of nitrone groups improves the neuroprotection profile of these BPNs, the final effect is also dependent on the substitutent that is being incorporated. Thus, BPNs bearing N-tert-Bu and N-Bn groups show better neuroprotective and antioxidant properties than those substituted with Me. All these results led us to propose homo-bis-nitrone BPHBN5 as the most balanced and interesting nitrone based on its neuroprotective capacity in different neuronal models of oxidative stress and in vitro ischemia as well as its antioxidant activity.  相似文献   

17.
The solubility of glibenclamide was evaluated in DMSO, NMP, 1,4-dioxane, PEG 400, Transcutol® HP, water, and aqueous mixtures (T = 293.15~323.15 K). It was then recrystallized to solvate and compressed into tablets, of which 30-day stability and dissolution was studied. It had a higher solubility in 1,4-dioxane, DMSO, NMP (Xexp = 2.30 × 103, 3.08 × 104, 2.90 × 104) at 323.15 K, its mixture (Xexp = 1.93 × 103, 1.89 × 104, 1.58 × 104) at 298.15 K, and 1,4-dioxane (w) + water (1−w) mixture ratio of w = 0.8 (Xexp = 3.74 × 103) at 323.15 K. Modified Apelblat (RMSD ≤ 0.519) and CNIBS/R-K model (RMSD ≤ 0.358) suggested good comparability with the experimental solubility. The minimum value of ΔG° vs ΔH° at 0.70 < x2 < 0.80 suggested higher solubility at that molar concentration. Based on the solubility, it was recrystallized into the solvate, which was granulated and compressed into tablets. Among the studied solvates, the tablets of glibenclamide dioxane solvate had a higher initial (95.51%) and 30-day (93.74%) dissolution compared to glibenclamide reference (28.93%). There was no stability issue even after granulation, drying, or at pH 7.4. Thus, glibenclamide dioxane solvate could be an alternative form to improve the molecule’s properties.  相似文献   

18.
Industrial processing of raspberry juice and wine generates considerable byproducts of raspberry pomace. Ellagic acids/ellagitannins, being characterized by their antioxidant and antiproliferation properties, constitute the majority of polyphenolics in the pomace and are valuable for recovery. In the present study, we developed a novel procedure with sodium bicarbonate assisted extraction (SBAE) to recover ellagic acid from raspberry wine pomace. Key parameters in the procedure, i.e., sodium bicarbonate concentration, temperature, time and solid/liquid (S/L) ratio, were investigated by single factor analysis and optimized subsequently by Response Surface Methodology (RSM). Optimal parameters for the SBAE method here were found to be 1.2% (w/v) NaHCO3, 1:93 (w/v) S/L ratio, 22 min and 100 °C. Under these conditions, the ellagic acid yield was 6.30 ± 0.92 mg/g pomace with an antioxidant activity of 79.0 ± 0.96 μmol Trolox eq/g pomace (DPPH assay), which are 2.37 and 1.32 times the values obtained by extraction with methanol–acetone–water solvent, respectively. The considerable improvement in ellagic acid extraction efficiency could be highly attributed to the reactions of lipid saponification and ellagitannin hydrolysis resulted from sodium bicarbonates. The present study has established an organic solvent-free method for the extraction of ellagic acid from raspberry wine pomace, which is feasible and practical in nutraceutical applications.  相似文献   

19.
Phenolic compounds from mango (M. indica) seed kernels (MSK) var. Sugar were obtained using supercritical CO2 and EtOH as an extraction solvent. For this purpose, a central composite design was carried out to evaluate the effect of extraction pressure (11–21 MPa), temperature (40–60 °C), and co-solvent contribution (5–15% w/w EtOH) on (i) extraction yield, (ii) oxidative stability (OS) of sunflower edible oil (SEO) with added extract using the Rancimat method, (iii) total phenolics content, (iv) total flavonoids content, and (v) DPPH radical assay. The most influential variable of the supercritical fluid extraction (SFE) process was the concentration of the co-solvent. The best OS of SEO was reached with the extract obtained at 21.0 MPa, 60 °C and 15% EtOH. Under these conditions, the extract increased the OS of SEO by up to 6.1 ± 0.2 h (OS of SEO without antioxidant, Control, was 3.5 h). The composition of the extract influenced the oxidative stability of the sunflower edible oil. By SFE it was possible to obtain extracts from mango seed kernels (MSK) var. Sugar that transfer OS to the SEO. These promissory extracts could be applied to foods and other products.  相似文献   

20.
Self-crosslinking of Tannic acid (TA) was accomplished to obtain poly(tannic acid) (p(TA)) particles in single step, surfactant free media using sodium periodate (NaIO4) as an oxidizing agent. Almost monodisperse p(TA) particles with 981 ± 76 nm sizes and −22 ± 4 mV zeta potential value with ellipsoidal shape was obtained. Only slight degradation of p(TA) particles with 6.8 ± 0.2% was observed at pH 7.4 in PBS up to 15 days because of the irreversible covalent formation between TA units, suggesting that hydrolytic degradation is independent from the used amounts of oxidation agents. p(TA) particles were found to be non-hemolytic up to 0.5 mg/mL concentration and found not to affect blood clotting mechanism up to 2 mg/mL concentration. Antioxidant activity of p(TA) particles was investigated by total phenol content (TPC), ferric reducing antioxidant potential (FRAP), trolox equivalent antioxidant capacity (TEAC), total flavanoid content (TFC), and Fe (II) chelating activity. p(TA) particles showed strong antioxidant capability in comparison to TA molecules, except FRAP assay. The antibacterial activity of p(TA) particles was investigated by micro-dilution technique on E. coli as Gram‑negative and S. aureus as Gram-positive bacteria and found that p(TA) particles are more effective on S. aureus with over 50% inhibition at 20 mg/mL concentration attained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号