首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emetic Bacillus cereus toxin cereulide presents an enormous safety hazard in the food industry, inducing emesis and nausea after the consumption of contaminated foods. Additional to cereulide itself, seven structurally related isoforms, namely the isocereulides A–G, have already been elucidated in their chemical structure and could further be identified in B. cereus contaminated food samples. The newly performed isolation of isocereulide A allowed, for the first time, 1D- and 2D-NMR spectroscopy of a biosynthetically produced isocereulide, revealing results that contradict previous assumptions of an l-O-Leu moiety within its chemical structure. By furthermore applying posthydrolytical dipeptide analysis, amino acid and α-hydroxy acid analysis by means of UPLC-ESI-TOF-MS, as well as MSn sequencing, the structure of previously reported isocereulide A could be corrected. Instead of the l-O-Leu as assumed to date, one l-O-Ile unit could be verified in the cyclic dodecadepsipeptide, revising the structure of isocereulide A to [(d-O-Leu-d-Ala-l-O-Val-l-Val)2(d-O-Leu-d-Ala-l-O-Ile-l-Val)].  相似文献   

2.
A new approach in the synthesis of water-soluble boron-rich compounds was proposed. The closo-dodecaborate cage is used as a hydrophilic substitutent providing for the water-solubility of the molecule whereas the carborane cage can be used for attachment to biomolecules using earlier developed methods. The double-cage molecules [o-, m-, and p-CB10H10C(CH2)4OB12H11]2− were prepared by the reaction of the tetramethylene oxonium derivative of the closo-dodecaborate anion, [B12H11O(CH2)4], with the corresponding lithiated carboranes. The compounds obtained have doubled the boron contents and could serve for the synthesis of agents for boron neutron capture therapy (BNCT).  相似文献   

3.
Aluminosilicate boggsite (Si/Al-BOG) has been hydrothermally synthesized without adding organic structure-directing agents (OSDAs) in the synthesis gel using the borosilicogermanium ITQ-47 (Si/B-ITQ-47) zeolite as seeds. The introduction of the costly and environmentally less benign phosphazene organic structure-directing agent is not required to grow the zeolite. Physicochemical characterization experiments show that Si/Al-BOG has good crystallinity, high surface area, tetrahedral Al3+ species, and acid sites. In order to test the catalytic performance of the zeolite, the synthesis of l,l-lactide from l-lactic acid was performed. Si/Al-BOG exhibits 88.2% conversion of l-lactic acid and 83.8% l,l-lactide selectivity, which are better than those of other zeolites studied up to now.

Aluminosilicate boggsite (Si/Al-BOG) has been hydrothermally synthesized without adding organic structure-directing agents (OSDAs) in the synthesis gel using the borosilicogermanium ITQ-47 (Si/B-ITQ-47) zeolite as seeds.  相似文献   

4.
Difficulties associated with computer-aided molecular design (CAMD) of carborane containing molecules have hampered drug development in boron neutron capture therapy (BNCT). A new approach of modeling and docking of carborane containing molecules with the readily available software packages , and is described. This new method is intended as a guide for boron chemists interested in using CAMD of carborane containing agents for medical applications such as BNCT.  相似文献   

5.
The species Pseudogymnoascus is known as a psychrophilic pathogenic fungus which is ubiquitously distributed in Antarctica. While the studies of its secondary metabolites are infrequent. Systematic research of the metabolites of the Antarctic fungus Pseudogymnoascus sp. HSX2#-11 led to the isolation of one new pyridine derivative, 4-(2-methoxycarbonyl-ethyl)-pyridine-2-carboxylic acid methyl ester (1), together with one pyrimidine, thymine (2), and eight diketopiperazines, cyclo-(dehydroAla-l-Val) (3), cyclo-(dehydroAla-l-Ile) (4), cyclo-(dehydroAla-l-Leu) (5), cyclo-(dehydroAla-l-Phe) (6), cyclo-(l-Val-l-Phe) (7), cyclo-(l-Leu-l-Phe) (8), cyclo-(l-Trp-l-Ile) (9) and cyclo-(l-Trp-l-Phe) (10). The structures of these compounds were established by extensive spectroscopic investigation, as well as by detailed comparison with literature data. This is the first report to discover pyridine, pyrimidine and diketopiperazines from the genus of Pseudogymnoascus.  相似文献   

6.
In the present work, shape tailored Cu2O microparticles were synthesized by changing the nature of the reducing agent and studied subsequently. d-(+)-glucose, d-(+)-fructose, d-(+)xylose, d-(+)-galactose, and d-(+)-arabinose were chosen as reducing agents due to their different reducing abilities. The morpho-structural characteristics were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS), while their photocatalytic activity was evaluated by methyl orange degradation under visible light (120 min). The results show that the number of carbon atoms in the sugars affect the morphology and particle size (from 250 nm to 1.2 µm), and differences in their degree of crystallinity and photocatalytic activity were also found. The highest activity was observed when glucose was used as the reducing agent.  相似文献   

7.
A prebiotically plausible route to enantioenriched glyceraldehyde is reported via a kinetic resolution mediated by peptides. The reaction proceeds via a selective reaction between the l-peptide and the l-sugar producing an Amadori rearrangement byproduct and leaving d-glyceraldehyde in excess. Solubility considerations in the synthesis of proline–valine (pro–val) peptides allow nearly enantiopure pro–val to be formed starting from racemic pro and nearly racemic (10%) ee val. (ee = enantiomeric excess = (|dl|)/(d + l)) Thus enantioenrichment of glyceraldehyde is achieved in a system with minimal initial chiral bias. This work demonstrates synergy between amino acids and sugars in the emergence of biological homochirality.

A prebiotically plausible route to enantioenriched glyceraldehyde is reported via a kinetic resolution mediated by peptides.  相似文献   

8.
Chiral nonbonding interaction with N-protected amino acid methyl esters used as chiral additives in achiral solvents allows dynamic induction of single-handed helical conformation in poly(quinoxaline-2,3-diyl)s (PQX) bearing only achiral substituents. Ac-l-Pro-OMe, for instance, allows induction of energy preference of 0.16 kJ mol−1 per monomer unit for the M-helical structure over the P-helix in t-butyl methyl ether (MTBE). With this new mode of screw-sense induction, homochiral screw-sense has been induced in virtually achiral poly(quinoxaline-2,3-diyl)s 1000-mer containing phosphine pendants (PQXphos). Use of PQXphos as a helically dynamic ligand along with Ac-Pro-OMe (l or d) as a chiral additive in MTBE allowed a highly enantioselective Suzuki–Miyaura coupling reaction with up to 95% enantiomeric excess.

Achiral poly(quinoxaline-2,3-diyl) containing Ar2P groups undergo dynamic induction of M-helical conformation through nonbonding interaction with protected AA such as Ac-l-Pro-OMe, serving as a chiral ligand in asymmetric cross-coupling with up to 95% ee.  相似文献   

9.
Amino acids have a wide range of biological activities, which usually rely on the stereoisomer presented. In this study, glycine and 21 common α-amino acids were investigated for their herbicidal property against Chinese amaranth (Amaranthus tricolor L.) and barnyard grass (Echinochloa crus-galli (L.) Beauv.). Both d- and l-isomers, as well as a racemic mixture, were tested and found that most compounds barely inhibited germination but moderately suppressed seedling growth. Various ratios of d:l-mixture were studied and synergy between enantiomers was found. For Chinese amaranth, the most toxic d:l-mixtures were at 3:7 (for glutamine), 8:2 (for methionine), and 5:5 (for tryptophan). For barnyard grass, rac-glutamine was more toxic than the pure forms; however, d-tryptophan exhibited greater activity than racemate and l-isomer, indicating the sign of enantioselective toxicity. The mode of action was unclear, but d-tryptophan caused bleaching of leaves, indicating pigment synthesis of the grass was inhibited. The results highlighted the enantioselective and synergistic toxicity of some amino acids, which relied upon plant species, chemical structures, and concentrations. Overall, our finding clarifies the effect of stereoisomers, and provides a chemical clue of amino acid herbicides, which may be useful in the development of herbicides from natural substances.  相似文献   

10.
Adsorption kinetic studies are conducted to investigate the potential to use chiral mesoporous materials nanoporous guanosine monophosphate material-1 (NGM-1) and nanoporous folic acid material-1 (NFM-1) for the enantiomeric separation of l- and d-valine. A pseudo-second-order (PSO) kinetic model is applied to test the experimental adsorption equilibrium isotherms, according to both the Langmuir and Freundlich models and the characteristic parameters for each model are determined. The calcined versions of both NGM-1 and NFM-1 fit the Langmuir model with maximum sorption capacities of 0.36 and 0.26 g/g for the preferred adsorption enantiomers, d-valine and l-valine, respectively. Experimental results and the analysis of adsorption models suggest a strong adsorbate–adsorbent interaction, and the formation of a monolayer of tightly packed amino acid on the internal mesopore surface for the preferred enantiomers.  相似文献   

11.
New 1,2-closo- and 7,8-nido-carboranylpyrazolopyrimidines bind to the translocator protein (TSPO) with high affinity, providing the first evidence of a unique two-site binding profile for the closo-carborane derivative. The boron-rich compounds can also deliver boron to human glioma cells far more effectively than clinical agents used in boron neutron capture therapy (BNCT).  相似文献   

12.
NR+ is a highly effective vitamin B3 type supplement due to its unique ability to replenish NAD+ levels. While NR+ chloride is already on the market as a nutritional supplement, its synthesis is challenging, expensive, and low yielding, making it cumbersome for large-scale industrial production. Here we report the novel crystalline NR+ salts, d/l/dl-hydrogen tartrate and d/l/dl-hydrogen malate. Their high-yielding, one-pot manufacture does not require specific equipment and is suitable for multi-ton scale production. These new NR+ salts seem ideal for nutritional applications due to their bio-equivalence compared to the approved NR+ chloride. In addition, the crystal structures of all stereoisomers of NR+ hydrogen tartrate and NR+ hydrogen malate and a comparison to the known NR+ halogenides are presented.  相似文献   

13.
A class of acceptor–donor–acceptor chromophoric small-molecule non-fullerene acceptors, 1–4, with difluoroboron(iii) β-diketonate (BF2bdk) as the electron-accepting moiety has been developed. Through the variation of the central donor unit and the modification on the peripheral substituents of the terminal BF2bdk acceptor unit, their photophysical and electrochemical properties have been systematically studied. Taking advantage of their low-lying lowest unoccupied molecular orbital energy levels (from −3.65 to −3.72 eV) and relatively high electron mobility (7.49 × 10−4 cm2 V−1 s−1), these BF2bdk-based compounds have been employed as non-fullerene acceptors in organic solar cells with maximum power conversion efficiencies of up to 4.31%. Moreover, bistable resistive memory characteristics with charge-trapping mechanisms have been demonstrated in these BF2bdk-based compounds. This work not only demonstrates for the first time the use of a boron(iii) β-diketonate unit in constructing non-fullerene acceptors, but also provides more insights into designing organic materials with multi-functional properties.

Boron(iii) β-diketonates have been demonstrated to serve as multi-functional materials in NFA-based OPVs and organic resistive memories.  相似文献   

14.
Recent decades have witnessed the emergence of Au(i) bis-N-heterocyclic carbenes (NHCs) as potential anticancer agents. However, these systems exhibit little interaction with serum proteins (e.g., human serum albumin), which presumably impacts their pharmacokinetic profile and tumor exposure. Anticancer drugs bound to human serum albumin (HSA) often benefit from significant advantages, including longer circulatory half-lives, tumor targeted delivery, and easier administration relative to the drug alone. In this work, we present Au(i) bis-NHCs complexes, 7 and 9, capable of binding to HSA. Complex 7 contains a reactive maleimide moiety for covalent protein conjugation, whereas its congener 9 contains a naphthalimide fluorophore for non-covalent binding. A similar drug motif was used in both cases. Complexes 7 and 9 were prepared from a carboxylic acid functionalized Au(i) bis-NHC (complex 2) using a newly developed post-synthetic amide functionalization protocol that allows coupling to both aliphatic and aromatic amines. Analytical, and in vitro techniques were used to confirm protein binding, as well as cellular uptake and antiproliferative activity in A549 human lung cancer cells. The present findings highlight a hitherto unexplored approach to modifying Au(i) bis-NHC drug candidates for protein ligation and serve to showcase the relative benefits of covalent and non-covalent HSA binding.

Au(i) bis-N-heterocyclic carbenes (NHCs) functionalized using an amide linker were found to bind to human serum albumin (HSA) in covalent and non-covalent fashion. The solubility and in vitro anti-cancer activity of these new conjugates were studied.  相似文献   

15.
The concept of metal–ligand cooperation opens new avenues for the design of catalytic systems that may offer alternative reactivity patterns to the existing ones. Investigations of this concept with ligands bearing a boron center in their skeleton established mechanistic pathways for the activation of small molecules in which the boron atom usually performs as an electrophile. Here, we show how this electrophilic behavior can be modified by the ligand trans to the boron center, evincing its ambiphilic nature. Treatment of diphosphinoboryl (PBP) nickel–methyl complex 1 with bis(catecholato)diboron (B2Cat2) allows for the synthesis of nickel(ii) bis-boryl complex 3 that promotes the clean and reversible heterolytic cleavage of dihydrogen leading to the formation of dihydroborate nickel complex 4. Density functional theory analysis of this reaction revealed that the heterolytic activation of H2 is facilitated by the cooperation of both boryl moieties and the metal atom in a concerted mechanism that involves a Ni(ii)/Ni(0)/Ni(ii) process. Contrary to 1, the boron atom from the PBP ligand in 3 behaves as a nucleophile, accepting a formally protic hydrogen, whereas the catecholboryl moiety acts as an electrophile, receiving the attack from the hydride-like fragment. This manifests the dramatic change in the electronic properties of a ligand by tuning the substituent trans to it and constitutes an unprecedented cooperative mechanism that involves two boryl ligands in the same molecule operating differently, one as a Lewis acid and the other one as a Lewis base, in cooperation with the metal. In addition, reactivity towards different nucleophiles such as amines or ammonia confirmed the electrophilic nature of the Bcat moiety, allowing the formation of aminoboranes.

A bis(boryl)nickel complex promotes the facile and reversible activation of H2 through a cooperative mechanism that involves the metal and both boryl moieties in a concerted five-center process.  相似文献   

16.
In the present work crude Agaricus bisporus extract (ABE) has been prepared and characterized by its tyrosinase activity, protein composition and substrate specificity. The presence of mushroom tyrosinase (PPO3) in ABE has been confirmed using two-dimensional electrophoresis, followed by MALDI TOF/TOF MS-based analysis. GH27 alpha-glucosidases, GH47 alpha-mannosidases, GH20 hexosaminidases, and alkaline phosphatases have been also detected in ABE. ABE substrate specificity has been studied using 19 phenolic compounds: polyphenols (catechol, gallic, caffeic, chlorogenic, and ferulic acids, quercetin, rutin, dihydroquercetin, l-dihydroxyphenylalanine, resorcinol, propyl gallate) and monophenols (l-tyrosine, phenol, p-nitrophenol, o-nitrophenol, guaiacol, o-cresol, m-cresol, p-cresol). The comparison of ABE substrate specificity and affinity to the corresponding parameters of purified A. bisporus tyrosinase has revealed no major differences. The conditions for spectrophotometric determination have been chosen and the analytical procedures for determination of 1.4 × 10−4–1.0 × 10−3 M l-tyrosine, 3.1 × 10−6–1.0 × 10−4 M phenol, 5.4 × 10−5–1.0 × 10−3 M catechol, 8.5 × 10−5–1.0 × 10−3 M caffeic acid, 1.5 × 10−4–7.5 × 10−4 M chlorogenic acid, 6.8 × 10−5–1.0 × 10−3 M l-DOPA have been proposed. The procedures have been applied for the determination of l-tyrosine in food supplements, l-DOPA in synthetic serum, and phenol in waste water from the food manufacturing plant. Thus, we have demonstrated the possibility of using ABE as a substitute for tyrosinase in such analytical applications, as food supplements, medical and environmental analysis.  相似文献   

17.
A simple and efficient route for the synthesis of new glycoconjugates has been developed. The approach acts as a model for a mini-library of compounds with a deoxy-selenosugar core joined to a polyphenolic moiety with well-known antioxidant properties. An unexpected stereocontrol detected in the Mitsunobu key reaction led to the most attractive product showing a natural d-configuration. Thus, we were able to obtain the target molecules from the commercially available d-ribose via a shorter and convenient sequence of reactions.  相似文献   

18.
Nanozymes as a newcomer in the artificial enzyme family have shown several advantages over natural enzymes such as their high stability in harsh environments, facile production on large scale, long storage time, low costs, and higher resistance to biodegradation. However, compared with natural enzymes, it is still a great challenge to design a nanozyme with high selectivity, especially high enantioselectivity. It is highly desirable and demanding to develop chiral nanozymes with high and on-demand enantioselectivity for practical applications. Herein, we present an unprecedented approach to construct chiral artificial peroxidase with ultrahigh enantioselectivity. Inspired by the structure of the natural enzyme horseradish peroxidase (HRP), we have constructed a series of stereoselective nanozymes (Fe3O4@Poly(AA)) by using the ferromagnetic nanoparticle (Fe3O4 NP) yolk as the catalytic core and amino acid-appended chiral polymer shell as the chiral selector. Among them, Fe3O4@Poly(d-Trp) exhibits the highest enantioselectivity. More intriguingly, their enantioselectivity will be readily reversed by replacing d-Trp with l-Trp. The selectivity factor is up to 5.38, even higher than that of HRP. Kinetic parameters, dialysis experiments, and molecular simulations together with activation energy reveal that the selectivity originates from the d-/l-Trp appended polymer shell, which can result in better affinity and catalytic activity to d-/l-tyrosinol. The artificial peroxidases have been used for asymmetric catalysis to prepare enantiopure d- or l-enantiomers. Besides, by using fluorescent labelled FITC-tyrosinolL and RhB-tyrosinolD, the artificial peroxidases can catalyze green or red fluorescent chiral tyrosinol to selectively label live yeast cells among yeast, S. aureus, E. coli and B. subtilis bacterial cells. This work opens a new avenue for better design of stereoselective artificial enzymes.

A yolk–shell stereoselective nanozyme is designed with a chiral selector. Nanozyme with D-/L-tryptophan possesses high selectivity towards D-/L-tyrosinol and can catalyze chiral tyrosinol to selectively label live yeast cells.  相似文献   

19.
Glucose is a key biomedical analyte, especially relevant to the management of diabetes. Current methods for glucose determination rely on the enzyme glucose oxidase, requiring specialist instrumentation and suffering from redox-active interferents. In a new approach, a powerful and highly selective achiral glucose receptor is mixed with a sample, l-glucose is added, and the induced CD spectrum is measured. The CD signal results from competition between the enantiomers, and is used to determine the d-glucose content. The involvement of l-glucose doubles the signal range from the CD spectrometer and allows sensitivity to be adjusted over a wide dynamic range. It also negates medium effects, which must be equal for both enantiomers. The method has been demonstrated with human serum, pre-filtered to remove proteins, giving results which closely match the standard biochemical procedures, as well as a cell culture medium and a beer sample containing high (70 mM) and low (0.4 mM) glucose concentrations respectively.

A highly selective receptor, circular dichroism and chiral competition are combined in this versatile method for d-glucose analysis.  相似文献   

20.
Luminescent lanthanide complexes have been actively studied as selective anion receptors for the past two decades. Ln(iii) complexes, particularly of europium(iii) and terbium(iii), offer unique photophysical properties that are very valuable for anion sensing in biological media, including long luminescence lifetimes (milliseconds) that enable time-gating methods to eliminate background autofluorescence from biomolecules, and line-like emission spectra that allow ratiometric measurements. By careful design of the organic ligand, stable Ln(iii) complexes can be devised for rapid and reversible anion binding, providing a luminescence response that is fast and sensitive, offering the high spatial resolution required for biological imaging applications. This review focuses on recent progress in the development of Ln(iii) receptors that exhibit sufficiently high anion selectivity to be utilised in biological or environmental sensing applications. We evaluate the mechanisms of anion binding and sensing, and the strategies employed to tune anion affinity and selectivity, through variations in the structure and geometry of the ligand. We highlight examples of luminescent Ln(iii) receptors that have been utilised to detect and quantify specific anions in biological media (e.g. human serum), monitor enzyme reactions in real-time, and visualise target anions with high sensitivity in living cells.

This minireview highlights advances in anion binding and sensing using luminescent lanthanide(iii) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号