首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cancer is one of the main global health problems. In order to develop novel antitumor agents, we synthesized 3,4-dihydropyrimidine-2(1H)-one (DHPM) and 2,6-diaryl-substituted pyridine derivatives as potential antitumor structures and evaluated their cytotoxic effects against several cancer cell lines. An easy and convenient method is reported for the synthesis of these derivatives, employing cobalt ferrite (CoFe 2 O 4 @SiO 2 -SO 3 H) magnetic nanoparticles under microwave irradiation and solvent-free conditions. The structural characteristics of the prepared nanocatalyst were investigated by FTIR, XRD, SEM, and TGA techniques. In vitro cytotoxic effects of the synthesized products were assessed against the human breast adenocarcinoma cell line (MCF-7), gastric adenocarcinoma (AGS), and human embryonic kidney (HEK293) cells via MTT assay. The results indicated that compound 4r (DHPM derivative) was the most toxic molecule against the MCF-7 cell line (IC 50 of 0.17 μg/mL). Moreover, compounds 4j and 4r (DHPM derivatives) showed excellent cytotoxic activities against the AGS cell line, with an IC 50 of 4.90 and 4.97 μg/mL, respectively. Although they are pyridine derivatives, compounds 5g and 5m were more active against the MCF-7 cell line. Results showed that the candidate compounds exhibited low cytotoxicity against HEK293 cells. The kinesin Eg5 inhibitory potential of the candidate compounds was evaluated by molecular docking. The docking results showed that, among the pyridine derivatives, compound 5m had the most free energy of binding (–9.52 kcal/mol) and lowest Ki (0.105 μM), and among the pyrimidine derivatives, compound 4r had the most free energy of binding (–7.67 kcal/mol) and lowest Ki (2.39 μM). Ligand-enzyme affinity maps showed that compounds 4r and 5m had the potential to interact with the Eg5 binding site via H-bond interactions to GLU116 and GLY117 residues. The results of our study strongly suggest that DHPM and pyridine derivatives inhibit important tumorigenic features of breast and gastric cancer cells. Our results may be helpful in the further design of DHPMs and pyridine derivatives as potential anticancer agents.  相似文献   

2.
Abstract

Various spirooxindoles (7a–c, 8a–c, 9a–c, and 10a–c) were efficiently synthesized using deep eutectic solvent ZnCl2+urea and well characterized using IR, 1H NMR, and 13C NMR spectroscopic techniques. The biological screening results showed that the compound 9a exhibited potent anticancer activity against MCF7 and HeLa cell lines with IC50 values 6.47?±?0.01 and 9.14?±?0.32?µM, respectively. The compound 7c exhibited potent activity against the HeLa cell line with IC50 value 6.81?±?0.01?µM. The compound 9a exhibited a potent antioxidant activity with IC50 value 7.34?±?0.17?µM. The comparative molecular docking study against the cancer proteins EGFR and HER2 revealed that the EGFR was the best target protein receptor for the target compounds. Among all the compounds, the compound 9a exhibited the least binding energy ?10.72?kcal/mol against the protein EGFR (PDB ID: 4HJO).  相似文献   

3.
Glycyrrhetinic acid (GA) is one of many interesting pentacyclic triterpenoids showing significant anticancer activity by triggering apoptosis in tumor cell lines. This study deals with the design and synthesis of new glycyrrhetinic acid (GA)–amino acid peptides and peptide ester derivatives. The structures of the new derivatives were established through various spectral and microanalytical data. The novel compounds were screened for their in vitro cytotoxic activity. The evaluation results showed that the new peptides produced promising cytotoxic activity against the human breast MCF-7 cancer cell line while comparing to doxorubicin. On the other hand, only compounds 3, 5, and 7 produced potent activity against human colon HCT-116 cancer cell line. The human liver cancer (HepG-2) cell line represented a higher sensitivity to peptide 7 (IC50; 3.30 μg/mL), while it appeared insensitive to the rest of the tested peptides. Furthermore, compounds 1, 3, and 5 exhibited a promising safety profile against human normal skin fibroblasts cell line BJ-1. In order to investigate the mode of action, compound 5 was selected as a representative example to study its in vitro effect against the apoptotic parameters and Bax/BCL-2/p53/caspase-7/caspase-3/tubulin, and DNA fragmentation to investigate beta (TUBb). Additionally, all the new analogues were subjected to antimicrobial assay against a panel of Gram-positive and Gram-negative bacteria and the yeast candida Albicans. All the tested GA analogues 1–8 exhibited more antibacterial effect against Micrococcus Luteus than gentamicin, but they exhibited moderate antimicrobial activity against the tested bacterial and yeast strains. Molecular docking studies were also simulated for compound 5 to give better rationalization and put insight to the features of its structure.  相似文献   

4.
A number of uracil amides cleave poly (ADP-ribose) polymerase and therefore novel thiouracil amide compounds were synthesized and screened for the loss of cell viability in a human-estrogen-receptor-positive breast cancer cell line. The synthesized compounds exhibited moderate to significant efficacy against human breast cancer cells, where the compound 5e IC50 value was found to be 18 μM. Thouracil amide compounds 5a and 5e inhibited the catalytical activity of PARP1, enhanced cleavage of PARP1, enhanced phosphorylation of H2AX, and increased CASPASE 3/7 activity. Finally, in silico analysis demonstrated that compound 5e interacted with PARP1. Hence, specific thiouracil amides may serve as new drug-seeds for the development of PARP inhibitors for use in oncology.  相似文献   

5.
We designed and synthesized the 1,3,4-thiadiazole derivatives differing in the structure of the substituents in C2 and C5 positions. The cytotoxic activity of the obtained compounds was then determined in biological studies using MCF-7 and MDA-MB-231 breast cancer cells and normal cell line (fibroblasts). The results showed that in both breast cancer cell lines, the strongest anti-proliferative activity was exerted by 2-(2-trifluorometylophenylamino)-5-(3-methoxyphenyl)-1,3,4-thiadiazole. The IC50 values of this compound against MCF-7 and MDA-MB-231 breast cancer cells were 49.6 µM and 53.4 µM, respectively. Importantly, all new compounds had weaker cytotoxic activity on normal cell line than on breast cancer cell lines. In silico studies demonstrated a possible multitarget mode of action for the synthesized compounds. The most likely mechanism of action for the new compounds is connected with the activities of Caspase 3 and Caspase 8 and activation of BAX proteins.  相似文献   

6.
A new series of benzotriazole moiety bearing substituted imidazol-2-thiones at N1 has been designed, synthesized and evaluated for in vitro anticancer activity against the different cancer cell lines MCF-7(breast cancer), HL-60 (Human promyelocytic leukemia), and HCT-116 (colon cancer). Most of the benzotriazole analogues exhibited promising antiproliferative activity against tested cancer cell lines. Among all the synthesized compounds, BI9 showed potent activity against the cancer cell lines such as MCF-7, HL-60 and HCT-116 with IC50 3.57, 0.40 and 2.63 µM, respectively. Compound BI9 was taken up for elaborate biological studies and the HL-60 cells in the cell cycle were arrested in G2/M phase. Compound BI9 showed remarkable inhibition of tubulin polymerization with the colchicine binding site of tubulin. In addition, compound BI9 promoted apoptosis by regulating the expression of pro-apoptotic protein BAX and anti-apoptotic proteins Bcl-2. These results provide guidance for further rational development of potent tubulin polymerization inhibitors for the treatment of cancer.  相似文献   

7.
The development of cancer treatments requires continuous exploration and improvement, in which the discovery of new drugs for the treatment of cancer is still an important pathway. In this study, based on the molecular hybridization strategy, a new structural framework with an N-aryl-N’-arylmethylurea scaffold was designed, and 16 new target compounds were synthesized and evaluated for their antiproliferative activities against four different cancer cell lines A549, MCF7, HCT116, PC3, and human liver normal cell line HL7702. The results have shown seven compounds with 1-methylpiperidin-4-yl groups having excellent activities against all four cancer cell lines, and they exhibited scarcely any activities against HL7702. Among them, compound 9b and 9d showed greatly excellent activity against the four kinds of cells, and the IC50 for MCF7 and PC3 cell lines were even less than 3 μM.  相似文献   

8.
Among the various types of cancer, lung cancer is the second most-diagnosed cancer worldwide. The kinesin spindle protein, Eg5, is a vital protein behind bipolar mitotic spindle establishment and maintenance during mitosis. Eg5 has been reported to contribute to cancer cell migration and angiogenesis impairment and has no role in resting, non-dividing cells. Thus, it could be considered as a vital target against several cancers, such as renal cancer, lung cancer, urothelial carcinoma, prostate cancer, squamous cell carcinoma, etc. In recent years, fungal secondary metabolites from the Indian Himalayan Region (IHR) have been identified as an important lead source in the drug development pipeline. Therefore, the present study aims to identify potential mycotic secondary metabolites against the Eg5 protein by applying integrated machine learning, chemoinformatics based in silico-screening methods and molecular dynamic simulation targeting lung cancer. Initially, a library of 1830 mycotic secondary metabolites was screened by a predictive machine-learning model developed based on the random forest algorithm with high sensitivity (1) and an ROC area of 0.99. Further, 319 out of 1830 compounds screened with active potential by the model were evaluated for their drug-likeness properties by applying four filters simultaneously, viz., Lipinski’s rule, CMC-50 like rule, Veber rule, and Ghose filter. A total of 13 compounds passed from all the above filters were considered for molecular docking, functional group analysis, and cell line cytotoxicity prediction. Finally, four hit mycotic secondary metabolites found in fungi from the IHR were screened viz., (−)-Cochlactone-A, Phelligridin C, Sterenin E, and Cyathusal A. All compounds have efficient binding potential with Eg5, containing functional groups like aromatic rings, rings, carboxylic acid esters, and carbonyl and with cell line cytotoxicity against lung cancer cell lines, namely, MCF-7, NCI-H226, NCI-H522, A549, and NCI H187. Further, the molecular dynamics simulation study confirms the docked complex rigidity and stability by exploring root mean square deviations, root mean square fluctuations, and radius of gyration analysis from 100 ns simulation trajectories. The screened compounds could be used further to develop effective drugs against lung and other types of cancer.  相似文献   

9.
Monastrol, a cell-permeable inhibitor of the kinesin Eg5, has been used to probe the dynamic organization of the mitotic spindle. The mechanism by which monastrol inhibits Eg5 function is unknown. We found that monastrol inhibits both the basal and the microtubule-stimulated ATPase activity of the Eg5 motor domain. Unlike many ATPase inhibitors, monastrol does not compete with ATP binding to Eg5. Monastrol appears to inhibit microtubule-stimulated ADP release from Eg5 but does not compete with microtubule binding, suggesting that monastrol binds a novel allosteric site in the motor domain. Finally, we established that (S)-monastrol, as compared to the (R)-enantiomer, is a more potent inhibitor of Eg5 activity in vitro and in vivo. Future structural studies should help in designing more potent Eg5 inhibitors for possible use as anticancer drugs and cell biological reagents.  相似文献   

10.
A novel series of imidazo[1,2-a]pyridine based 1H-1,2,3-triazole derivatives were designed, synthesized, and evaluated for their anticancer activity against two different human cancer cell lines. Most of the synthesized compounds displayed anticancer activity with IC50 values from 2.35 to 120.46 μM. Furthermore, compounds 9b , 9c, 9d, 9f , and 9j showed potent inhibitory activity against cancer cell lines, with IC50 values close to that of standard drug. It is important to note that compound 9d was more potent than the standard drug cisplatin with IC50 values of 10.89 and 2.35 μM against Hela cell line and MCF-7 cell line, respectively.  相似文献   

11.
以N-甲基-4-氯-2-吡啶甲酰胺为原料,经过4步共合成4个化合物(S-1,S-2,R-1和R-2),其中2个为新的化合物(S-1和R-2)。经过1H NMR,13C NMR,HR-MS等方法对其结构表征。最后通过CTG法,测试4种化合物对四种人肝癌细胞(PLC/PRF/5,Hep3B,HepG2,BEL-7402)的抑制活性。结果表明:S-1,S-2,R-1和R-2均表现较明显的对4种细胞的抑制活性,且呈现出浓度依赖关系。IC50值从1304nM到11228nM。其中化合物R-1(瑞格非尼)对PLC/PRF/5和HepG2细胞,S-1对Hep3B细胞的抑制活性,R-2对HepG2的细胞活性均较高于原药索拉非尼。  相似文献   

12.
The reaction of 3,4-dichlorophenyl-1,3,4-oxadiazole-2( 3H )-thione with piperidine derivatives via Mannich reaction was used to generate eleven novel compounds in moderate to good yields. Synthesized molecules were characterized according to their structure with 1H NMR, 13C NMR and FT-IR spectral foundations, which were compatible with literature informations. Antimicrobial activity and cytotoxicity studies were done by disc diffusion and NCI-60 sulphordamine B assay methods. The antimicrobial test results revealed that synthesized compounds have better activity against gram-positive species than gram-negative ones. A total analysis of the antibacterial, antifungal, and antiyeast activity revealed that newly synthesized compounds were really active against Bacillus cereus , Bacillus ehimensis, and Bacillus thuringiensis species . For cytotoxicity, among three different cancer cell lines (HCT116, MCF7, HUH7) compounds 5c, 5d, 5e, 5f, 5g, 5i, 5j and 5k were seemed especially effective on HUH7 cancer cell line via moderate to good activity. More significantly, against liver carcinoma cell line (HUH7) most of the compounds of the series ( 5c-5g and 5i-5j ) have better IC50 values (IC50= 18.78 µM) than 5-Florouracil (5-FU) and also compound 5d possessed 10.1 µM value, which represents good druggable cytotoxic activity. Further, the molecules were also screened for in silico chemoinformatic and toxicity data to gather the predicted bioavailibity and safety measurements.  相似文献   

13.
《中国化学》2017,35(10):1633-1639
A series of novel 1,2,3‐triazole‐quinazoline derivatives were synthesized in five steps starting from anthranilamide by conventional methods. All the title compounds 10a — 10r were evaluated for cytotoxic activity against four human cancer cell lines (MGC ‐803, EC ‐109, MCF ‐7 and HGC ‐27) using MTT assay in vitro . Some of the synthesized compounds exhibited moderate to potent activity against tested cancer cell lines. Among them, compounds 10 h and 10q exhibited excellent growth inhibition against HGC ‐27 and compound 10 m also possessed excellent activity against MCF ‐7, with IC50 values less than 1 µmol/L. Especially, compound 10 h was more cytotoxic than 5‐fluorouracil against all tested four human cancer cell lines.  相似文献   

14.
A series of new compounds containing an indole-triazole - peptide conjugate were designed as potential agents possessing the dual anti-bacterial and anticancer activities. Accordingly, 20 compounds were prepared via a multi-step synthesis involving the copper-catalyzed azide-alkyne cycloaddition (CuAAC) as a key step in moderate to high yield. All the synthesized compounds were purified by chromatographic techniques and characterized by IR, 1H and 13C NMR and mass spectral data. The synthesized derivatives were screened for their antimicrobial activities against one gram-positive (Staphylococcus aureus) and three gram-negative (Escherichia coli, Klebsiella pneumonia, and Proteus vulgaris) bacteria using an agar-well diffusion method. Most of the compounds showed moderate to reasonable antibacterial activities especially the compound 9e that showed good activities against all the strains. The potential of DNA gyrase inhibitory activity of this compound was assessed by using molecular docking studies in silico carried out using Autodock Vina software. The low ΔGbind value (−9.4 Kcal/mol) of compound 9e suggested its good interactions with the target protein in silico. The cytotoxic activities of some of the compounds synthesized were evaluated via a MTT assay using the human lung cancer cell line A549. Several compounds showed promising activities among which compound 9b , 9k, and 9e showed low IC50 values.  相似文献   

15.
Sixteen new 2-(benzothiazol-2-ylthio)-N′-(3-substituted-4-(3,4-substitutedphenyl)thiazol-2(3H)-ylidene)acetohydrazide derivatives (4a-4p) were synthesized. The structures of the synthesized compounds were elucidated using FT-IR, 1H-NMR, 13C-NMR, and HRMS spectral data. Anticancer activity of the compounds 4a-4p against C6 (rat brain glioma) and A549 (human lung adenocarcinoma) cell lines was evaluated by using MTT, inhibition of DNA synthesis, and flow cytometric analysis assays. According to MTT assay, 4a and 4d were found to be the most active compounds against C6 cell line with an IC50 value of 0.03 mM. Moreover, IC50 values of 4a (0.2 mM) and 4d (0.1 mM) against NIH3T3 (mouse embryo fibroblast cell line) were higher than their IC50 values (0.03 mM) against C6 cell line. Accordingly, selectivity of compound 4a against C6 cell line was two-fold higher than that of compound 4d. Flow cytometry analysis showed that these compounds display anticancer activity by inducing apoptosis. As a result, compound 4a has a remarkable anticancer activity and a good selectivity towards C6 cell lines.  相似文献   

16.
A series of 30 non-covalent imidazo[1,2-a]quinoxaline-based inhibitors of epidermal growth factor receptor (EGFR) were designed and synthesized. EGFR inhibitory assessment (against wild type) data of compounds revealed 6b, 7h, 7j, 9a and 9c as potent EGFRWT inhibitors with IC50 values of 211.22, 222.21, 193.18, 223.32 and 221.53 nM, respectively, which were comparable to erlotinib (221.03 nM), a positive control. Furthermore, compounds exhibited excellent antiproliferative activity when tested against cancer cell lines harboring EGFRWT; A549, a non-small cell lung cancer (NSCLC), HCT-116 (colon), MDA-MB-231 (breast) and gefitinib-resistant NSCLC cell line H1975 harboring EGFRL858R/T790M. In particular, compound 6b demonstrated significant inhibitory potential against gefitinib-resistant H1975 cells (IC50 = 3.65 μM) as compared to gefitinib (IC50 > 20 μM). Moreover, molecular docking disclosed the binding mode of the 6b to the domain of EGFR (wild type and mutant type), indicating the basis of inhibition. Furthermore, its effects on redox modulation, mitochondrial membrane potential, cell cycle analysis and cell death mode in A549 lung cancer cells were also reported.  相似文献   

17.
Scaffolds hybridization is a well-known drug design strategy for antitumor agents. Herein, series of novel indolyl-pyrimidine hybrids were synthesized and evaluated in vitro and in vivo for their antitumor activity. The in vitro antiproliferative activity of all compounds was obtained against MCF-7, HepG2, and HCT-116 cancer cell lines, as well as against WI38 normal cells using the resazurin assay. Compounds 1–4 showed broad spectrum cytotoxic activity against all these cancer cell lines compared to normal cells. Compound 4g showed potent antiproliferative activity against these cell lines (IC50 = 5.1, 5.02, and 6.6 μM, respectively) comparable to the standard treatment (5-FU and erlotinib). In addition, the most promising group of compounds was further evaluated for their in vivo antitumor efficacy against EAC tumor bearing mice. Notably, compound 4g showed the most potent in vivo antitumor activity. The most active compounds were evaluated for their EGFR inhibitory (range 53–79%) activity. Compound 4g was found to be the most active compound against EGFR (IC50 = 0.25 µM) showing equipotency as the reference treatment (erlotinib). Molecular modeling study was performed on compound 4g revealed a proper binding of this compound inside the EGFR active site comparable to erlotinib. The data suggest that compound 4g could be used as a potential anticancer agent.  相似文献   

18.
Several derivatives containing morpholine/piperidine, anilines, and dipeptides as pending moieties were prepared using s-triazine as a scaffold. These compounds were evaluated for their anticancer activity against two human breast cancer cell lines (MCF-7 and MDA-MB-231), a colon cancer cell line (HCT-116), and a non-tumorigenic cell line (HEK 293). Tamoxifen was used as a reference. Animal toxicity tests were carried out in zebrafish embryos. Most of these compounds showed a higher activity against breast cancer than colon cancer. Compound 3a—which contains morpholine, aniline, and glycylglycinate methyl ester—showed a high level of cytotoxicity against MCF-7 cells with IC50 values of less than 1 µM. This compound showed a much lower level of toxicity against the non-tumorigenic HEK-293 cell line, and in the in vivo studies using zebrafish embryos. Furthermore, it induced cell cycle arrest at the G2/M phase, and apoptosis in MCF-7 cells. On the basis of our results, 3a emerges as a potential candidate for further development as a therapeutic drug to treat hormone receptor-positive breast cancer.  相似文献   

19.
Sophora flavescens is a regularly used traditional Chinese medicine. In an attempt to discover adequate active agents, the isoprenoid flavonoids from S. flavescens were further investigated. In this work, two new compounds (1–2, kurarinol A-B) together with 26 known ones (3–28) were isolated and elucidated on the basis of extensive NMR, UV and MS analyses. Furthermore, the antioxidant activity of all constituents was assessed through ABTS, PTIO and DPPH methodologies and also were evaluated for cytotoxic activity by three tumor cell lines (HepG2, A549 and MCF7) and one human normal cell line (LO2 cells). As a result, a multitude of components revealed significant inhibitory activity. In particular, compound 1–2 (kurarinol A-B), two new flavanonols derivatives, exhibited the most potent ABTS inhibitory activity with IC50 of 1.21 µg/mL and 1.81 µg/mL, respectively. Meanwhile, the new compound 1 demonstrated remarkable cytotoxicity against three cancer cells lines with IC50 values ranging from 7.50–10.55 μM but showed little effect on the normal cell. The two new isoprenoid flavonoids could be promising antioxidant and anti-tumor nature agents.  相似文献   

20.
In the study, two novel compounds along with two new compounds were isolated from Grewia optiva. The novel compounds have never been reported in any plant source, whereas the new compounds are reported for the first time from the studied plant. The four compounds were characterized as: 5,5,7,7,11,13-hexamethyl-2-(5-methylhexyl)icosahydro-1H-cyclopenta[a]chrysen-9-ol (IX), docosanoic acid (X), methanetriol mano formate (XI) and 2,2’-(1,4-phenylene)bis(3-methylbutanoic acid (XII). The anticholinesterase, antidiabetic, and antioxidant potentials of these compounds were determined using standard protocols. All the isolated compounds exhibited a moderate-to-good degree of activity against acetylcholinesterases (AChE) and butyrylcholinesterase (BChE). However, compound XII was particularly effective with IC50 of 55 μg/mL (against AChE) and 60 μg/mL (against BChE), and this inhibitory activity is supported by in silico docking studies. The same compound was also effective against DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) radicals with IC50 values of 60 and 62 μg/mL, respectively. The compound also significantly inhibited the activities of α-amylase and α-glucosidase in vitro. The IC50 values for inhibition of the two enzymes were recorded as 90 and 92 μg/mL, respectively. The in vitro potentials of compound XII to treat Alzheimer’s disease (in terms of AchE and BChE inhibition), diabetes (in terms of α-amylase and α-glucosidase inhibition), and oxidative stress (in terms of free radical scavenging) suggest further in vivo investigations of the compound for assessing its efficacy, safety profile, and other parameters to proclaim the compound as a potential drug candidate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号