首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this study, we characterized three novel peptides derived from the 19 kDa α-zein, and determined their bioactive profile in vitro and developed a structural model in silico. The peptides, 19ZP1, 19ZP2 and 19ZP3, formed α-helical structures and had positive and negative electrostatic potential surfaces (range of −1 to +1). According to the in silico algorithms, the peptides displayed low probabilities for cytotoxicity (≤0.05%), cell penetration (10–33%) and antioxidant activities (9–12.5%). Instead, they displayed a 40% probability for angiotensin-converting enzyme (ACE) inhibitory activity. For in vitro characterization, peptides were synthesized by solid phase synthesis and tested accordingly. We assumed α-helical structures for 19ZP1 and 19ZP2 under hydrophobic conditions. The peptides displayed antioxidant activity and ACE-inhibitory activity, with 19ZP1 being the most active. Our results highlight that the 19 kDa α-zein sequences could be explored as a source of bioactive peptides, and indicate that in silico approaches are useful to predict peptide bioactivities, but more structural analysis is necessary to obtain more accurate data.  相似文献   

2.
Antimicrobial peptides are an important class of therapeutic agent used against a wide range of pathogens such as Gram-negative and Gram-positive bacteria, fungi, and viruses. Mastoparan (MpVT) is an α-helix and amphipathic tetradecapeptide obtained from Vespa tropica venom. This peptide exhibits antibacterial activity. In this work, we investigate the effect of amino acid substitutions and deletion of the first three C-terminal residues on the structure–activity relationship. In this in silico study, the predicted structure of MpVT and its analog have characteristic features of linear cationic peptides rich in hydrophobic and basic amino acids without disulfide bonds. The secondary structure and the biological activity of six designed analogs are studied. The biological activity assays show that the substitution of phenylalanine (MpVT1) results in a higher antibacterial activity than that of MpVT without increasing toxicity. The analogs with the first three deleted C-terminal residues showed decreased antibacterial and hemolytic activity. The CD (circular dichroism) spectra of these peptides show a high content α-helical conformation in the presence of 40% 2,2,2-trifluoroethanol (TFE). In conclusion, the first three C-terminal deletions reduced the length of the α-helix, explaining the decreased biological activity. MpVTs show that the hemolytic activity of mastoparan is correlated to mean hydrophobicity and mean hydrophobic moment. The position and spatial arrangement of specific hydrophobic residues on the non-polar face of α-helical AMPs may be crucial for the interaction of AMPs with cell membranes.  相似文献   

3.
Numerous scientific studies have confirmed the beneficial therapeutic effects of phenolic acids. Among them gentisic acid (GA), a phenolic acid extensively found in many fruit and vegetables has been associated with an enormous confirmed health benefit. The present study aims to evaluate the antidiabetic potential of gentisic acid and highlight its mechanisms of action following in silico and in vitro approaches. The in silico study was intended to predict the interaction of GA with eight different receptors highly involved in the management and complications of diabetes (dipeptidyl-peptidase 4 (DPP4), protein tyrosine phosphatase 1B (PTP1B), free fatty acid receptor 1 (FFAR1), aldose reductase (AldR), glycogen phosphorylase (GP), α-amylase, peroxisome proliferator-activated receptor gamma (PPAR-γ) and α-glucosidase), while the in vitro study studied the potential inhibitory effect of GA against α-amylase and α-glucosidase. The results indicate that GA interacted moderately with most of the receptors and had a moderate inhibitory activity during the in vitro tests. The study therefore encourages further in vivo studies to confirm the given results.  相似文献   

4.
Data from the World Health Organisation show that the global incidence of dengue infection has risen drastically, with an estimated 400 million cases of dengue infection occurring annually. Despite this worrying trend, there is still no therapeutic treatment available. Herein, we investigated short peptide fragments with a varying total number of amino acid residues (peptide fragments) from previously reported dengue virus type 2 (DENV2) peptide-based inhibitors, DN58wt (GDSYIIIGVEPGQLKENWFKKGSSIGQMF), DN58opt (TWWCFYFCRRHHPFWFFYRHN), DS36wt (LITVNPIVTEKDSPVNIEAE), and DS36opt (RHWEQFYFRRRERKFWLFFW), aided by in silico approaches: peptide–protein molecular docking and 100 ns of molecular dynamics (MD) simulation via molecular mechanics using Poisson–Boltzmann surface area (MMPBSA) and molecular mechanics generalised Born surface area (MMGBSA) methods. A library of 11,699 peptide fragments was generated, subjected to in silico calculation, and the candidates with the excellent binding affinity and shown to be stable in the DI-DIII binding pocket of DENV2 envelope (E) protein were determined. Selected peptides were synthesised using conventional Fmoc solid-phase peptide chemistry, purified by RP-HPLC, and characterised using LCMS. In vitro studies followed, to test for the peptides’ toxicity and efficacy in inhibiting the DENV2 growth cycle. Our studies identified the electrostatic interaction (from free energy calculation) to be the driving stabilising force for the E protein–peptide interactions. Five key E protein residues were also identified that had the most interactions with the peptides: (polar) LYS36, ASN37, and ARG350, and (nonpolar) LEU351 and VAL354; these residues might play crucial roles in the effective binding interactions. One of the peptide fragments, DN58opt_8-13 (PFWFFYRH), showed the best inhibitory activity, at about 63% DENV2 plague reduction, compared with no treatment. This correlates well with the in silico studies in which the peptide possessed the lowest binding energy (−9.0 kcal/mol) and was maintained steadily within the binding pocket of DENV2 E protein during the MD simulations. This study demonstrates the use of computational studies to expand research on lead optimisation of antiviral peptides, thus explaining the inhibitory potential of the designed peptides.  相似文献   

5.
The herbal plant Petroselinum crispum (P. crispum) (Mill) is commonly available around the world. In this study, the leaves of the herbal plant P. crispum were collected from the central region of Al-Kharj, Saudi Arabia, to explore their in vitro pharmacological activity. Essential oil from the leaves of P. crispum was isolated using the hydrodistillation method. The composition of P. crispum essential oil (PCEO) was determined using Gas chromatography-mass spectrometry (GC-MS). A total of 67 components were identified, representing approximately 96.02% of the total volatile composition. Myristicin was identified as the principal constituent (41.45%). The in vitro biological activity was assessed to evaluate the antioxidant, antimicrobial, and anti-inflammatory potential of PCEO. PCEO showed the highest antimicrobial activity against Candida albicans and Staphylococcus aureus among all the evaluated microbial species. In vitro anti-inflammatory evaluation using albumin and trypsin assays showed the excellent anti-inflammatory potential of PCEO compared to the standard drugs. An in silico study of the primary PCEO compound was conducted using online tools such as PASS, Swiss ADME, and Molecular docking. In silico PASS prediction results supported our in vitro findings. Swiss ADME revealed the drug likeness and safety properties of the major metabolites present in PCEO. Molecular docking results were obtained by studying the interaction of Myristicin with an antifungal (PDB: 1IYL and 3LD6), antibacterial (PDB: 1AJ6 and 1JIJ), antioxidant (PDB: 3NM8 and 1HD2), and anti-inflammatory (3N8Y and 3LN1) receptors supported the in vitro results. Therefore, PCEO or Myristicin might be valuable for developing anti-inflammatory and antimicrobial drugs.  相似文献   

6.
Antioxidative peptides that inhibit myeloperoxidase (MPO) enzyme activity can effectively defend against oxidative stress damage. The antioxidant peptides from tuna protein were produced using alcalase hydrolysis and purified by ultrafiltration and Sephadex G-15, and the fractions with the highest free radicals scavenging ability and oxygen radical absorbance capacity (ORAC) values were sequenced using HPLC–MS/MS. Fifty-five peptide sequences were identified, 53 of which were successfully docked into MPO. The representative peptide ACGSDGK had better antioxidant activity and inhibition of MPO chlorination and peroxidation than the reference peptide hLF1-11. The docking model further showed intense molecular interactions between ACGSDGK and MPO, including hydrogen bonds, charge, and salt bridge interactions, which occluded the active site and blocked the catalytic activity of MPO. These results suggested that the antioxidant peptide ACGSDGK has the potential to inhibit oxidative stress and alleviate inflammation in vivo because of its inhibitory effect on the MPO enzyme.  相似文献   

7.
Epidermal growth factor receptor (EGFR), overexpressed in many types of cancer, has been proved as a high potential target for targeted cancer therapy due to its role in regulating proliferation and survival of cancer cells. In the present study, a series of designed vinyl sulfone derivatives was screened against EGFR tyrosine kinase (EGFR-TK) using in silico and in vitro studies. The molecular docking results suggested that, among 78 vinyl sulfones, there were eight compounds that could interact well with the EGFR-TK at the ATP-binding site. Afterwards, these screened compounds were tested for the inhibitory activity towards EGFR-TK using ADP-Glo™ kinase assay, and we found that only VF16 compound exhibited promising inhibitory activity against EGFR-TK with the IC50 value of 7.85 ± 0.88 nM. In addition, VF16 showed a high cytotoxicity with IC50 values of 33.52 ± 2.57, 54.63 ± 0.09, and 30.38 ± 1.37 µM against the A431, A549, and H1975 cancer cell lines, respectively. From 500-ns MD simulation, the structural stability of VF16 in complex with EGFR-TK was quite stable, suggesting that this compound could be a novel small molecule inhibitor targeting EGFR-TK.  相似文献   

8.
The study of pharmacologically active peptides is central for the understanding of cancer and the development of novel therapeutic approaches. In this context, both qualitative and quantitative determination of bioactive peptides in biological fluids/tissues and their effect on endogenous factors (e.g. hormones) are of great importance. A mass spectrometry-based approach was developed and applied towards the measurement of leuprolide, a peptide drug for the treatment of prostate cancer, in mouse plasma. High-pressure liquid chromatography coupled to a hybrid quadrupole linear ion trap (QqLIT) mass spectrometer, a platform that combines the benefits of triple QqLIT instruments, was employed for the study. Using the described methodology, we established that picomolar concentrations of leuprolide could be measured in mouse plasma (limit of quantification of 0.1 ng/ml). In order to optimize pharmacokinetic properties of analogs of leuprolide, a facile in vivo mouse model was developed and leuprolide concentrations were determined in mouse plasma following intraperitoneal administration. In the same animal model, we demonstrated the versatility of the described MS-based approach by the determination of plasma concentrations of testosterone, an established biomarker for the treatment of prostate cancer. Following dosing with leuprolide, circulating testosterone was increased significantly in comparison to vehicle-treated mice. Finally, in vitro metabolism of leuprolide was evaluated by incubation of leuprolide with mouse kidney membranes, followed by identification of major metabolites by MS. Such studies provide the framework for future evaluation of novel leuprolide analogs with potential therapeutic advantages.  相似文献   

9.
采用碱性蛋白酶对核桃蛋白进行酶解, 检测了所得酶解物的抗氧化能力, 包括对1,1-二苯基-2-三硝基苯肼(DPPH)和羟基自由基(·OH)的清除能力; 利用Sephadex G-25 凝胶层析柱和反相柱对核桃蛋白酶解物进行分离纯化; 采用液相色谱-质谱(LC-ESI-Q-TOF)联用方法测得抗氧化能力最强的多肽的序列为Ala-Gly-Gly-Ala, 其还原力和还原型谷胱甘肽相当.  相似文献   

10.
Background: Hepatocellular carcinoma (HCC) is one of the most widespread malignancies and is reported as the fourth most prevalent cause of cancer deaths worldwide. Therefore, we aimed to investigate the probable mechanistic cytotoxic effect of the promising 2-thioxoimidazolidin-4-one derivative on liver cancer cells using in vitro and in vivo approaches. The compounds were tested for the in vitro cytotoxic activity using MTT assay, and the promising compound was tested in colony forming unit assay, flow cytometric analysis, RT-PCR, Western blotting, in vivo using SEC-carcinoma and in silico to highlight the virtual mechanism of action. Both compounds 4 and 2 performed cytotoxic effects against HepG2 cells with IC50 values of 0.017 and 0.18 μM, respectively, compared to Staurosporine and 5-Fu as reference drugs with IC50 values of 5.07 and 5.18 µM, respectively. Compound 4 treatment revealed apoptosis induction by 19.35-fold (11.42% compared to 0.59% in control), arresting the cell cycle at G2/M phase. Moreover, studying gene expression that plays critical roles in cell cycle and apoptosis by RT-PCR demonstrated that compound 4 enhances the expression of the pro-apoptotic genes p53, PUMA, and Caspase 3, 8, and 9, and impedes the anti-apoptotic Bcl-2 gene in the HepG2 cells. It can also inhibit the PI3K/AKT pathway at both gene and protein levels, which was reinforced by the in silico predictions of the molecular docking simulations towards the PI3K/AKT proteins. Finally, in vivo study verified that compound 4 has a promising anti-cancer activity through activating antioxidant levels (CAT, SOD and GSH) and ameliorating hematological, biochemical, and histopathological findings.  相似文献   

11.
The aim of this study was to explore the composition and evaluate the in silico and in vitro antioxidants and antimicrobial and anti-inflammatory effects of Apium graveolens var. dulce leaves essential oil (AGO) collected from Al-Kharj (Saudi Arabia). AGO was isolated using the hydro-distillation method, and its composition was studied using gas-chromatography-mass Spectrometry (GC–MS), antimicrobial activities using well diffusion assay, and antioxidant and anti-inflammatory activities using spectrophotometric methods. The pharmacological activities of their major compounds were predicted using PASS (prediction of activity spectra for substances) and drug-likening properties by ADME (absorption, distribution, metabolism, and excretion) through web-based online tools. Isocnidilide (40.1%) was identified as the major constituent of AGO along with β-Selinene, Senkyunolide A, Phytyl acetate, and 3-Butylphthalide. AGO exhibited a superior antibacterial activity, and the strongest activity was detected against Gram-positive bacteria and Candida albicans. Additionally, it exhibited a weaker antioxidant potential and stronger anti-inflammatory effects. PASS prediction supported the pharmacological finding, whereas ADMET revealed the safety of AGO. The molecular docking of isocnidilide was carried out for antibacterial (DNA gyrase), antioxidant (tyrosinase), and anti-inflammatory (cyclooxygenase-2) activities. The docking simulation results were involved hydrophilic interactions and demonstrated high binding affinity of isocnidilide for anti-inflammatory protein (cycloxygenase-2). The presence of isocnidilide makes AGO a potential anti-inflammatory and antimicrobial agent. AGO, and its major metabolite isocnidilide, may be a suitable candidate for the future drug development.  相似文献   

12.
The consequences of manipulations in structure and amino acid composition of native cyclolinopeptide A (CLA) from linen seeds, and its linear precursor on their biological activities and mechanisms of action, are reviewed. The modifications included truncation of the peptide chain, replacement of amino acid residues with proteinogenic or non-proteinogenic ones, modifications of peptide bond, and others. The studies revealed changes in the immunosuppressive potency of these analogs investigated in a number of in vitro and in vivo experimental models, predominantly in rodents, as well as differences in their postulated mechanism of action. The modified peptides were compared with cyclosporine A and parent CLA. Some of the synthesized and investigated peptides show potential therapeutic usefulness.  相似文献   

13.
Galeon, a natural cyclic-diarylheptanoid (CDH), which was first isolated from Myrica gale L., is known to have potent cytotoxicity against A549 cell lines, anti-tubercular activity against Mycobacterium tuberculosis H37Rv, chemo-preventive potential, and moderate topoisomerase inhibitory activity. Here, in silico metabolism and toxicity prediction of galeon by CYP450, in vitro metabolic profiling study in rat liver microsomes (RLMs), and molecular interactions of galeon-CYP450 isoforms were performed. An in silico metabolic prediction study showed demethyl and mono-hydroxy galeon were the metabolites with the highest predictability. Among the predicted metabolites, mono-hydroxy galeon was found to have plausible toxicities such as skin sensitization, thyroid toxicity, chromosome damage, and carcinogenicity. An in vitro metabolism study of galeon, incubated in RLMs, revealed eighteen Phase-I metabolites, nine methoxylamine, and three glutathione conjugates. Identification of possible metabolites and confirmation of their structures were carried out using ion-trap tandem mass spectrometry. In silico docking analysis of galeon demonstrated significant interactions with active site residues of almost all CYP450 isoforms.  相似文献   

14.
Antioxidant properties and angiotensin-converting enzyme (ACE) inhibitory activities of protein hydrolysates from goby (Zosterisessor ophiocephalus) muscle, with different degrees of hydrolysis (DH) from 5 to 25 %, prepared by treatment with crude proteases extract from smooth hound intestines, were investigated. Goby protein hydrolysates (GPHs) are rich in Gly and Thr, which accounted for 14.1–15 % and 11.6–13.2 % of the total amino acids, respectively. The antioxidant activities of GPHs were investigated by using several in vitro assay systems. All GPHs exhibited significant metal chelating activity and DPPH free radical-scavenging activity, and inhibited linoleic acid peroxidation. For the ACE-inhibitory activity, as the DH increased, the activity of GPHs increased. The obtained results revealed that antioxidant and ACE-inhibitory activities of GPHs were influenced by the degree of hydrolysis. A medium degree of enzymatic hydrolysis was appropriate to obtain GPHs with good antioxidant activity, while small peptides were essential to obtain high ACE inhibitory activity.  相似文献   

15.
血红蛋白片段的合成及生物活性   总被引:1,自引:0,他引:1  
采用多肽固相合成方法, 以Wang 树脂为载体, Fmoc为N-端氨基酸保护基, HOBt-HBTU为缩合试剂, 合成了一系列血红蛋白α链的片段, 产物经RP-HPLC和质谱进行了确定. 生物活性研究结果表明, 该系列多肽具有较高的血管紧张素Ⅰ转换酶抑制活性, 但不具有α-葡萄糖苷酶抑制活性.  相似文献   

16.
Dengue virus (DENV), a member of the family Flaviviridae, is a threat for global health as it infects more than 100 million people yearly. Approved antiviral therapies or vaccines for the treatment or prevention of DENV infections are not available. In the present study, natural compounds were screened for their antiviral activity against DENV by in vitro cell line-based assay. α-Mangostin, a xanthanoid, was observed to exert antiviral activity against DENV-2 under pre-, co- and post-treatment testing conditions. The antiviral activity was determined by foci forming unit (FFU) assay, quantitative RT-PCR and cell-based immunofluorescence assay (IFA). A complete inhibition of DENV-2 was observed at 8 µM under the co-treatment condition. The possible inhibitory mechanism of α-Mangostin was also determined by docking studies. The molecular docking experiments indicate that α-Mangostin can interact with multiple DENV protein targets such as the NS5 methyltransferase, NS2B-NS3 protease and the glycoprotein E. The in vitro and in silico findings suggest that α-Mangostin possesses the ability to suppress DENV-2 production at different stages of its replication cycle and might act as a prophylactic/therapeutic agent against DENV-2.  相似文献   

17.
Eukaryotic elongation factor 2 kinase (eEF2K) is a highly conserved α kinase and is increasingly considered as an attractive therapeutic target for cancer as well as other diseases. However, so far, no selective and potent inhibitors of eEF2K have been identified. In this study, pharmacophore screening, homology modeling, and molecular docking methods were adopted to screen novel inhibitor hits of eEF2K from the traditional Chinese medicine database (TCMD), and then cytotoxicity assay and western blotting were performed to verify the validity of the screen. Resultantly, after two steps of screening, a total of 1077 chemicals were obtained as inhibitor hits for eEF2K from all 23,034 compounds in TCMD. Then, to verify the validity, the top 10 purchasable chemicals were further analyzed. Afterward, Oleuropein and Rhoifolin, two reported antitumor chemicals, were found to have low cytotoxicity but potent inhibitory effects on eEF2K activity. Finally, molecular dynamics simulation, pharmacokinetic and toxicological analyses were conducted to evaluate the property and potential of Oleuropein and Rhoifolin to be drugs. Together, by integrating in silico screening and in vitro biochemical studies, Oleuropein and Rhoifolin were revealed as novel eEF2K inhibitors, which will shed new lights for eEF2K-targeting drug development and anticancer therapy.  相似文献   

18.
净电荷对螺旋型抗癌肽生物活性的影响   总被引:1,自引:0,他引:1  
以高活性两亲性α-螺旋型阳离子抗癌肽A12L/A20L(多肽P)为模板, 在其亲水面进行氨基酸定点取代, 获得了一系列带有不同净电荷的多肽类似物, 研究了净电荷对螺旋型抗癌肽生物活性的影响. 结果表明, 抗癌肽净电荷的改变对其溶血活性影响较小(最大差异为2倍), 而对抗癌活性和选择性的影响显著(最大差异为10倍). 抗癌肽P的净电荷最适范围为+7到+8, 分子间静电排斥作用的最佳数目为3~5个, 高于或低于此范围, 其抗癌活性和选择性均明显降低. 与人的正常细胞相比, 负电性的癌细胞膜对于抗癌肽的净电荷变化更敏感, 表明两亲性螺旋型抗癌肽针对癌细胞与正常细胞表现出良好的选择特异性.  相似文献   

19.
Prodynorphin is a precursor that has multiple cleavage sites to release various dynorphin opioid peptides. The dynorphin analogs used in this study have 18 amino acid residues. A series of dynorphin-like peptides, differing by a single residue (alanine substitution) were assembled by Fmoc solid-phase procedures and purified by preparative high performance liquid chromatography (HPLC). Separation of the Ala-scan dynorphin analogs was investigated by micellar electrokinetic chromatography (MEKC) employing anionic, cationic and zwitterionic surfactants. The role of electrostatic and hydrophobic forces in analyte-surfactant interactions is discussed with respect to the observed elution patterns. Separation of all dynorphin analogs by MEKC using a zwitterionic surfactant shows this technique to be powerful for separating closely related peptide species. It also demonstrates the potential for using MEKC for the prescreening of peptide libraries to determine their biological activity toward specific receptors. Results from the separation of dynorphin analogs by free solution and ion-pairing capillary electrophoresis are also presented.  相似文献   

20.
Oxidative stress and inflammation are two conditions that coexist in many multifactorial diseases such as atherosclerosis and neurodegeneration. Thus, the design of multifunctional compounds that can concurrently tackle two or more therapeutic targets is an appealing approach. In this study, the basic NSAID structure was fused with the antioxidant moieties 3,5-di-tert-butyl-4-hydroxybenzoic acid (BHB), its reduced alcohol 3,5-di-tert-butyl- 4-hydroxybenzyl alcohol (BHBA), or 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox), a hydrophilic analogue of α-tocopherol. Machine learning algorithms were utilized to validate the potential dual effect (anti-inflammatory and antioxidant) of the designed analogues. Derivatives 1–17 were synthesized by known esterification methods, with good to excellent yields, and were pharmacologically evaluated both in vitro and in vivo for their antioxidant and anti-inflammatory activity, whereas selected compounds were also tested in an in vivo hyperlipidemia protocol. Furthermore, the activity/binding affinity of the new compounds for lipoxygenase-3 (LOX-3) was studied not only in vitro but also via molecular docking simulations. Experimental results demonstrated that the antioxidant and anti-inflammatory activities of the new fused molecules were increased compared to the parent molecules, while molecular docking simulations validated the improved activity and revealed the binding mode of the most potent inhibitors. The purpose of their design was justified by providing a potentially safer and more efficient therapeutic approach for multifactorial diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号