首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bud of Vaccinium dunalianum Wight has been traditionally consumed as health herbal tea by “Yi” people in Yunnan Province, China, which was locally named “Que Zui tea”. This paper studied the chemical constituents of five fractions from Vaccinium dunalianum, and their enzyme inhibitory effects of α-glucosidase and pancreatic lipase, antioxidant activity, and cytoprotective effects on H2O2-induced oxidative damage in HepG2 cells. The methanol extract of V. dunalianum was successively partitioned with petroleum ether (PF), chloroform (CF), ethyl acetate (EF), n-butanol (BF), and aqueous (WF) to obtain five fractions. The chemical profiling of the five fractions was analyzed by ultra-high-performance liquid chromatography coupled with a tandem mass spectrometry (UHPLC-MS/MS), and 18 compounds were tentatively identified. Compared to PF, CF, BF and WF, the EF revealed the highest total phenols (TPC) and total flavonoids (TFC), and displayed the strongest enzyme inhibition ability (α-glucosidase and pancreatic lipase) and antioxidant capacity (DPPH, ABTS and FRAP). Furthermore, these five fractions, especially EF, could effectively inhibit reactive oxygen species (ROS) production and cell apoptosis on H2O2-induced oxidative damage protection in HepG2 cells. This inhibitory effect might be caused by the up-regulation of intracellular antioxidant enzyme activity (CAT, SOD, and GSH). The flavonoids and phenolic acids of V. dunalianum might be the bioactive substances responsible for enzyme inhibitory, antioxidant, and cytoprotective activities.  相似文献   

2.
A new arbutin derivative, namely dunalianosides J (1), along with six known compounds, arbutin (2), robustaside A (3), 6′-O-caffeoylarbutin (4), dunalianoside D (5), kaempferol 3-O-β-D-glucopyranoside (6) and kaempferol 3-O-β-D-sambubioside (7) were isolated from the leaves of Vaccinium dunalianum Wight (Ericaceae). The structure of 1 was elucidated by extensive 1D and 2D NMR, HR-MS and CD spectroscopic analyses. In which, kaempferol 3-O-β-D-sambubioside (7) was isolated from the genus Vaccinium for the first time.  相似文献   

3.
Bioassay-guided separation of young leaves extracts of Syzygium antisepticum (Blume) Merr. & L.M. Perry led to the isolation of four triterpenoids (betulinic acid, ursolic acid, jacoumaric acid, corosolic acid) and one sterol glucoside (daucosterol) from the ethyl acetate extract, and three polyphenols (gallic acid, myricitrin, and quercitrin) from the methanol (MeOH) extract. The MeOH extract of S. antisepticum and some isolated compounds, ursolic acid and gallic acid potentially exhibited acetylcholinesterase activity evaluated by Ellman’s method. The MeOH extract and its isolated compounds, gallic acid, myricitrin, and quercitrin, also strongly elicited DPPH radical scavenging activity. In HEK-293 cells, the MeOH extract possessed cellular antioxidant effects by attenuating hydrogen peroxide (H2O2)-induced ROS production and increasing catalase, glutathione peroxidase-1 (GPx-1), and glutathione reductase (GRe). Furthermore, myricitrin and quercitrin also suppressed ROS production induced by H2O2 and induced GPx-1 and catalase production in HEK-293 cells. These results indicated that the young leaves of S. antisepticum are the potential sources of antioxidant and anticholinesterase agents. Consequently, S. antisepticum leaves are one of indigenous vegetables which advantage to promote the health and prevent diseases related to oxidative stress.  相似文献   

4.
Several species within the genera Cassia or Senna have a treasure of traditional medicines worldwide and can be a promising source of bioactive molecules. The objective of the present study was to evaluate the phenolic content and antioxidant and enzyme inhibition activities of leaf methanolic extracts of C. fistula L., C. grandis L., S. alexandrina Mill., and S. italica Mill. The two Cassia spp. contained higher total polyphenolic content (42.23–49.75 mg GAE/g) than the two Senna spp., and C. fistula had significantly (p ˂ 0.05) the highest concentration. On the other hand, the Senna spp. showed higher total flavonoid content (41.47–59.24 mg rutin equivalent per g of extract) than that found in the two Cassia spp., and S. alexandrina significantly (p ˂ 0.05) accumulated the highest amount. HPLC–MS/MS analysis of 38 selected bioactive compounds showed that the majority of compounds were identified in the four species, but with sharp variations in their concentrations. C. fistula was dominated by epicatechin (8928.75 µg/g), C. grandis by kaempferol-3-glucoside (47,360.04 µg/g), while rutin was the major compound in S. italica (17,285.02 µg/g) and S. alexandrina (6381.85). The methanolic extracts of the two Cassia species exerted significantly (p ˂ 0.05) higher antiradical activity, metal reducing capacity, and total antioxidant activity than that recorded from the two Senna species’ methanolic extracts, and C. fistula displayed significantly (p ˂ 0.05) the highest values. C. grandis significantly (p ˂ 0.05) exhibited the highest metal chelating power. The results of the enzyme inhibition activity showed that the four species possessed anti-AChE activity, and the highest value, but not significantly (p ≥ 0.05) different from those obtained by the two Cassia spp., was exerted by S. alexandrina. The Cassia spp. exhibited significantly (p ˂ 0.05) higher anti-BChE and anti-Tyr properties than the Senna spp., and C. grandise revealed significantly (p ˂ 0.05) the highest values. C. grandise revealed significantly (p ˂ 0.05) the highest α- amylase inhibition, while the four species had more or less the same effect against the α-glucosidase enzyme. Multivariate analysis and in silico studies showed that many of the identified phenols may play key roles as antioxidant and enzyme inhibitory properties. Thus, these Cassia and Senna species could be a promising source of natural bioactive agents with beneficial effects for human health.  相似文献   

5.
Warionia saharae Benth. & Coss. (Asteraceae) is an endemic species of North Africa naturally grown in the southwest of the Algerian Sahara. In the present study, this species’ hydromethanolic leaf extract was investigated for its phenolic profile characterized by ultra-high-performance liquid chromatography coupled with a diode array detector and an electrospray mass spectrometer (UHPLC-DAD-ESI/MS). Additionally, the chemical composition of W. saharae was analyzed by gas chromatography–mass spectrometry, and its antioxidant potential was assessed through five in vitro tests: DPPH scavenging activity, ABTS●+ scavenging assay, galvinoxyl scavenging activity, ferric reducing power (FRP), and cupric reducing antioxidant capacity. The UHPLC-DAD-ESI/MS analysis allowed the detection and quantification of 22 compounds, with taxifolin as the dominant compound. The GC–MS analysis allowed the identification of 37 compounds, and the antioxidant activity data indicate that W. saharae extract has a very high capacity to capture radicals due to its richness in compounds with antioxidant capacity. The extract also showed potent α-glucosidase inhibition as well as a good anti-inflammatory activity. However, weak anti-α-amylase and anticholinesterase activities were recorded. Moreover, an in silico docking study was performed to highlight possible interactions between three significant compounds identified in W. saharae extract and α-glucosidase enzyme.  相似文献   

6.
The aim of this study was to investigate the chemical composition, antioxidant and enzyme inhibitory activities of methanol (MeOH) extracts from Onosma bourgaei (Boiss.) and O. trachytricha (Boiss.). In addition, the interactions between phytochemicals found in extracts in high amounts and the target enzymes in question were revealed at the molecular scale by performing in silico molecular docking simulations. While the total amount of flavonoid compounds was higher in O. bourgaei, O. trachytricha was richer in phenolics. Chromatographic analysis showed that the major compounds of the extracts were luteolin 7-glucoside, apigenin 7-glucoside and rosmarinic acid. With the exception of the ferrous ion chelating assay, O. trachytricha exhibited higher antioxidant activity than O. bourgaei. O. bourgaei exhibited also slightly higher activity on digestive enzymes. The inhibitory activities of the Onosma species on tyrosinase were almost equal. In addition, the inhibitory activities of the extracts on acetylcholinesterase (AChE) were stronger than the activity on butyrylcholinesterase (BChE). Molecular docking simulations revealed that luteolin 7-glucoside and apigenin 7-glucoside have particularly strong binding affinities against ChEs, tyrosinase, α-amylase and α-glucosidase when compared with co-crystallized inhibitors. Therefore, it was concluded that the compounds in question could act as effective inhibitors on cholinesterases, tyrosinase and digestive enzymes.  相似文献   

7.
Phloretamide及其衍生物的合成与抗氧化活性   总被引:1,自引:0,他引:1  
吴冬冬  樊志强  任杰  胡昆 《合成化学》2016,24(3):211-214
以3-(4-羟基苯基)丙烯酰胺(Phloretamide)为先导化合物,取代苯丙烯酸为原料,经取代反应和酰胺化反应制得苯丙烯酰胺类化合物(2a~2d); 2经氢化还原反应合成了4个Phloretamide衍生物(3a~3d); 1, 2和3经去甲基化反应分别制得〖WTHZ〗〖STHZ〗1e, 2e~2f和3e~3f〖STBZ〗〖WTBZ〗。其中,3-(3,4,5-三羟基苯基)丙烯酰胺(2f), 3-(2,3,4-三羟基苯基)丙酰胺(3e)和3-(3,4,5-三羟基苯基)丙酰胺(3f)为新化合物,其结构经1H NMR, 13C NMR和ESI-MS表征。初步抗氧化活性测定结果表明:c为10 μmol·L-1时,2b, 2f和3f具有较好的自由基清除活性,其清除率分别为66.8%, 59.8%和69.4%,均优于阳性对照咖啡酸,咖啡酸苯乙酯和Vc。  相似文献   

8.
Four new pentacyclic triterpenoids named Sabiadiscolor A–D (1 and 7–9) together with eleven known ones were isolated by repeated column chromatography. Their structures were identified and characterized by NMR and MS spectral data as 6 oleanane-type pentacyclic triterpenoids (1–6), 7 ursane-type ones (7–13), and 2 lupanane-type ones (14–15). Except for compound 15, all other compounds were isolated from Sabia discolor Dunn for the first time. Their α-glycosidase inhibitory activities were evaluated, which showed that compounds 1, 3, 8, 9, 13, and 15 implied remarkable activities with IC50 values ranging from 0.09 to 0.27 μM, and the preliminary structure–activity relationship was discussed.  相似文献   

9.
Coffee cherry is a rich source of chlorogenic acids (CGAs) and caffeine. In this study we examined the potential antioxidant activity and enzyme inhibitory effects of whole coffee cherries (WCC) and their two extracts on α-amylase, α-glucosidase and acetylcholinesterase (AChE) activities, which are targets for the control of diabetes and Alzheimer’s diseases. Whole coffee cherry extract 40% (WCCE1) is rich in chlorogenic acid compounds, consisting of a minimum of 40% major isomers, namely 3-caffeoylquinic acids, 4-caffeoylquinic acids, 5-caffeoylquinic acids, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, 4-feruloylquinc acid, and 5-feruloylquinc acid. Whole coffee cherry extract 70% (WCCE2) is rich in caffeine, with a minimum of 70%. WCCE1 inhibited the activities of digestive enzymes α-amylase and α-glucosidase, and WCCE2 inhibited acetylcholinesterase activities with their IC50 values of 1.74, 2.42, and 0.09 mg/mL, respectively. Multiple antioxidant assays—including DPPH, ABTS, FRAP, ORAC, HORAC, NORAC, and SORAC—demonstrated that WCCE1 has strong antioxidant activity.  相似文献   

10.
Anneslea fragrans Wall., commonly known as “Pangpo Tea”, is traditionally used as a folk medicine and healthy tea for the treatment of liver and intestine diseases. The aim of this study was to purify the antioxidative and cytoprotective polyphenols from A. fragrans leaves. After fractionation with polar and nonpolar organic solvents, the fractions of aqueous ethanol extract were evaluated for their total phenolic (TPC) and flavonoid contents (TFC) and antioxidant activities (DPPH, ABTS, and FRAP assays). The n-butanol fraction (BF) showed the highest TPC and TFC with the strongest antioxidant activity. The bio-guided chromatography of BF led to the purification of six flavonoids (1–6) and one benzoquinolethanoid (7). The structures of these compounds were determined by NMR and MS techniques. Compound 6 had the strongest antioxidant capacity, which was followed by 5 and 2. The protective effect of the isolated compounds on hydrogen peroxide (H2O2)-induced oxidative stress in HepG2 cells revealed that the compounds 5 and 6 exhibited better protective effects by inhibiting ROS productions, having no significant difference with vitamin C (p > 0.05), whereas 6 showed the best anti-apoptosis activity. The results suggest that A. fragrans could serve as a valuable antioxidant phytochemical source for developing functional food and health nutraceutical products.  相似文献   

11.
Rhynchanthus beesianus W. W. Smith, an edible, medicinal, and ornamental plant, is mainly cultivated in China and Myanmar. The essential oil (EO) from R. beesianus rhizome has been used as an aromatic stomachic in China. The chemical composition and biological activities of EO from R. beesianus rhizome were reported for the first time. Based on gas chromatography with flame ionization or mass selective detection (GC-FID/MS) results, the major constituents of EO were 1,8-cineole (47.6%), borneol (15.0%), methyleugenol (11.2%), and bornyl formate (7.6%). For bioactivities, EO showed a significant antibacterial activity against Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Proteus vulgaris with the diameter of the inhibition zone (DIZ) (8.66–10.56 mm), minimal inhibitory concentration (MIC) (3.13–6.25 mg/mL), and minimal bactericidal concentration (MBC) (6.25–12.5 mg/mL). Moreover, EO (128 μg/mL) significantly inhibited the production of proinflammatory mediators nitric oxide (NO) (92.73 ± 1.50%) and cytokines tumor necrosis factor-α (TNF-α) (20.29 ± 0.17%) and interleukin-6 (IL-6) (61.08 ± 0.13%) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages without any cytotoxic effect. Moreover, EO exhibited significant acetylcholinesterase (AChE) inhibitory activity (the concentration of the sample that affords a 50% inhibition in the assay (IC50) = 1.03 ± 0.18 mg/mL) and moderate α-glucosidase inhibition effect (IC50 = 11.60 ± 0.25 mg/mL). Thus, the EO could be regarded as a bioactive natural product and has a high exploitation potential in the cosmetics and pharmaceutical industries.  相似文献   

12.
A new triterpene glycoside, silviridoside, was isolated from the aerial parts of Silene viridiflora (Caryophyllaceae) using different chromatographic techniques. The structure of silviridoside was comprehensively elucidated as 3-O-β-D-galacturonopyranosyl-quillaic acid 28-O-β-D-glucopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→3)]-β-D-fucopyranosyl ester by one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). Silviridoside showed promising antioxidant activity in different antioxidant assays such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) (2.32 mg TE/g), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (1.24 mg TE/g), cupric-reducing antioxidant capacity (CUPRAC) (9.59 mg TE/g), ferric-reducing antioxidant power (FRAP) (5.13 mg TE/g), phosphomolybdenum (PHD) (0.28 mmol TE/g), and metal-chelating (MCA) (6.62 mg EDTA/g) assays. It exhibited a good inhibitory potential on acetylcholinesterase (AChE) (2.52 mg GALAE/g), butyrylcholinesterase (BChE) (7.16 mg GALAE/g), α-amylase (0.19 mmol ACAE/g), α-glucosidase (1.21 mmol ACAE/g), and tyrosinase (38.83 mg KAE/g). An in silico evaluation of the pharmacodynamic, pharmacokinetic, and toxicity properties of silviridoside showed that the new compound exhibited reasonable pharmacodynamic and pharmacokinetic properties without any mutagenic effect, but slight toxicity. Thus, it could be concluded that silviridoside could act as a promising lead drug for pharmaceutical and nutraceutical developments to combat oxidative stress and various disorders, but a future optimization is necessary.  相似文献   

13.
Two new abietane diterpenoids (1,2), along with five known diterpenoids (3–7), were first isolated and purified from the stems of Clerodendrum bracteatum. The structures of the new compounds were established by extensive analysis of mass spectrometric and 1-D, 2-D NMR spectroscopic data. Their antioxidant activities were determined on DPPH radical scavenging and ABTS. The in vitro cytotoxic activities of the compounds were evaluated against the HL-60 and A549 cell lines by the MTT method.  相似文献   

14.
The extraction, characterization and antioxidant activity of polysaccharides from Choerospondias axillaris leaves were investigated in the present study. Two purified polysaccharide fractions, CALP-1 and CALP-2, were isolated from crude Choerospondias axillaris leaf polysaccharides (CALP) by DEAE-52 cellulose chromatography and Sephadex G-100 column chromatography. The characteristics of CAL-1 and CALP-2 were determined by using High-performance Gel Permeation Chromatography (HPGPC), High-Performance Anion-Exchange Chromatography, HPAEC (HPAEC-PAD) and Fourier transform infrared spectroscopy (FTIR). CALP-1 with molecular weight of 11.20 KDa was comprised of Rhamnose, Arabinose, Galactose, Glucose, Xylose, Mannose and galacturonic acid in a molar ratio of 5.16:2.31:5.50:27.18:1.00:0.76:1.07. CAL-2 with molecular weight of 8.03 KDa consisted of Rhamnose, Arabinose, Galactose, Glucose, and galacturonic acid at a ratio of 1.38:3.63:18.84:8.28:1.45. FTIR revealed that CALP-1 and CALP-2 were acidic polysaccharides. The antioxidant activity of crude CALP, CALP-1 and CALP-2 was evaluated in vitro. The fraction CALP-2 was demonstrated to be of polysaccharide nature containing a large percentage of Galactose but no Xylose and Mannose. The antioxidant activity assays showed that CALP-1 and CALP-2 exhibited antioxidant and scavenging activities on hydroxyl and DPPH radicals in vitro. Compared with pure polysaccharide, crude CALP exhibited stronger anti-oxidant activities. These results will provide a better understanding of Choerospondias axillaris leaf polysaccharide and promote the potential applications of Choerospondias axillaris leaf polysaccharide in the pharmacological field and as a natural antioxidant.  相似文献   

15.
The present study aimed to identify the composition of the aerial parts of Rubia cordifolia L. A chemical investigation on the EtOAc extracts from the aerial parts of Rubia cordifolia resulted in the isolation of four new anthraquinones, namely Cordifoquinone A–D (1–4), along with 16 known anthraquinones. Their structures were elucidated on the basis of NMR and HR-ESIMS data. All isolates were assessed for their inhibitory effects on NO production in LPS-stimulated RAW 264.7 macrophage cells. Compounds 1, 3 and 10 exhibited significant inhibitory activities with IC50 values of 14.05, 23.48 and 29.23 μmol·L−1, respectively. Their antibacterial activities of four bacteria, Escherichia coli (ATCC 25922), Staphylococcus aureus subsp. aureus (ATCC 29213), Salmonella enterica subsp. enterica (ATCC 14028) and Pseudomonas aeruginosa (ATCC 27853), were also evaluated. Our results indicated that the antibacterial activity of these compounds is inactive.  相似文献   

16.
Quorum sensing (QS) plays an important role in the production of virulence factors and pathogenicity in pathogenic bacteria and is, therefore, a hopeful target to fight against bacterial infections. During our search for natural QS inhibitors, two new xanthonolignoids (1 and 2), each existing as a racemic mixture, one new simple oxygenated xanthone (7), and eight known analogs (3–6, 8–11) were isolated from Hypericum scabrum Linn. Chiral separation of 1 yielded a pair of enantiomers 1a and 1b. The structures of these compounds were elucidated by spectroscopic analysis and ECD (electrostatic circular dichroism) calculations. All isolates were evaluated for their QS inhibitory activity against Chromobacterium violaceum. Both 9 and 10 exhibited the most potent QS inhibitory effects with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 31.25 and 62.5 μM, respectively. Crystal violet staining was used to further evaluate the biofilm inhibition potential of compounds 7, 9 and 10, and the formation of biofilms increased with decreasing drug concentration in a classic dose-dependent manner. The results of a cytotoxicity assay revealed that compounds 7, 9 and 10 exhibited no cytotoxic activity on PC-12 cells at the tested concentration.  相似文献   

17.
Interest in the use of essential oils (EOs) in the biomedical and food industries have seen growing over the last decades due to their richness in bioactive compounds. The challenges in developing an EO extraction process that assure an efficient levels of monoterpenes with impact on biological activities have driven the present study, in which the EO extraction process of rosemary, lavender and citrus was performed by simultaneous hydrodistillation–steam distillation, and the influence of EO composition on biological activities, namely antioxidant, anti-inflammatory, antidiabetic, anti-acetylcholinesterase, anti-tyrosinase, antibacterial, and antibiofilm activity, were evaluated. The EO yields of combinations were generally higher than the individual plants (R. officinalis (Ro), L. angustifolia (La), and C. aurantium (Ca)) extracted by the conventional hydrodistillation. The EOs obtained by this process generally had a better capacity for scavenging the free radicals, inhibiting α-glucosidase, and acetylcholinesterase activities than the individual EOs. The combination of EOs did not improve the ability for scavenging peroxide hydrogen or the capacity for inhibiting lipoxygenase activity. The antioxidant activity or the enzyme inhibition activity could not only be attributed to their major compounds because they presented lower activities than the EOs. The chemical composition of the combination Ro:La:Ca, at the ratio 1/6:1/6:2/3, was enriched in 1,8-cineole, linalool, and linalyl acetate and resulted in lower MIC values for all tested strains in comparison with the ratio 1/6:2/3:1/6 that was deprived on those components. The biofilm formation of Gram positive and Gram negative bacteria was impaired by the combination Ro:La:Ca at a sub-inhibitory concentration.  相似文献   

18.
19.
The phytochemical composition of leaves, stems, pericarps and rhizomes ethanolic extracts of Asparagus acutifolius were characterized by HPLC-DAD-MS. A. acutifolius samples contain at least eleven simple phenolics, one flavonon, two flavonols and six steroidal saponins. The stem extracts showed the highest total phenolic acid and flavonoid contents, where cafeic acid and rutin were the main compounds. No flavonoids were detected in the leaf, pericarp or rhizome while caffeic acid and ferulic acid were the predominant. Steroidal saponins were detected in the different plant parts of A. acutifolius, and the highest contents were found in the rhizome extracts. The stem extracts exhibited the highest antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) and the highest 2,2-azino-bis (3 ethylbenzothiazoline-6-sulphonic acid) (ABTS) scavenging activity was found in the pericarp extracts. The rhizome and leaf extracts showed a potent cytotoxic activity against HCT-116 and HepG2 cell lines. Moreover, the pericarp and rhizome extracts revealed a moderate lipase inhibitory activity. The leaf and rhizome extracts were screened for their antimicrobial activity against human pathogenic isolates. The leaf extract exhibited a powerful inhibitory activity against all the bacteria and fungi tested.  相似文献   

20.
Angiotensin I‐converting enzyme (ACE) inhibitory peptide was isolated from the hen ovotransferrin hydrolysate using chymotryptic hydrolysis by two steps of reverse‐phase high‐performance liquid chromatography. The amino sequence of this novel peptide was identified as Lys‐Val‐Arg‐Glu‐Gly‐Thr‐Thr‐Tyr that inhibited ACE activity in vitro in a concentration‐dependent manner with an effective concentration (IC50) of 102.8 μM. Also, this inhibition was identified as noncompetitive using the Lineweaver‐Burk plot. Moreover, the antihypertensive action of this novel peptide was investigated by an intravenous injection into spontaneously hypertensive rats (SHR). A dose‐dependent reduction of systolic blood pressure by this peptide was observed after 40 min of treatment and it decreased the blood pressure markedly at the maximal dose (1 nmol/mL/kg). The maximal blood pressure lowering activity of this peptide was calculated as 163% of captopril (10 pmol/mL/kg) that was used as positive control. In conclusion, the obtained data suggests that Lys‐Val‐Arg‐Glu‐Gly‐Thr‐Thr‐Tyr has an ability to inhibit ACE activity and decrease the systolic blood pressure in hypertensive animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号