首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DC corona discharge in air and the induced ionic wind were investigated in the needle-to-water system at atmospheric pressure. The water deformation was measured under various conditions, and wind pressure and active areas were estimated accordingly. The effects of applied voltage, gap spacing and tip radius on the corona ionic wind were studied and the qualitative analysis was provided. Self-rotation of corona discharge was observed in experiments. The results show that higher voltage or electric field strength results in a stronger ionic wind. The active area increases with applied voltage below a voltage threshold. There is an optimal gap distance for a wider as well as stronger ionic wind and blunter needle we used leads to an enhancement on both the active area and the wind strength. The wind velocity reaches 7 m/s at optimized condition in the present system. The rotation of corona discharge helps to improve the active area and uniformity of the treating area which may be associated with the chemical reaction of the water surface.  相似文献   

2.
The assisted corona discharge is a unique discharge configuration that utilizes multiple collecting electrodes to minimize the voltage required to initiate a corona discharge and to generate an ionic wind. In this work, the geometric parameters that govern the formation of the assisted corona discharge and subsequent ionic wind are evaluated. Flow velocity measurements suggest that the geometry of the electrode spacings is optimized for ionic wind generation when the current flowing to the collector electrode is maximized, and that as the electrode gap is decreased to microscale dimensions, ionic wind production is inhibited.  相似文献   

3.
We present the results of an experimental study on ionic wind generation by a needle-to-cylinder dc corona discharge. A strong electrical field in the air generates air flow driven by the motion of ionized gas molecules along electric field lines. We measured the ionic wind velocity and discharge current with respect to various electrode geometries, distances between electrodes, and applied voltages. Our measurements suggest an empirical model for the ionic wind velocity as a function of the geometric factors of the collector electrode and the applied electric potential, which is useful for designing ionic wind cooling systems for small electronics.  相似文献   

4.
Corona discharge is one of many methods that convert electrical power into mechanical force. It has been studied for various industrial fields because of its many advantages over conventional motor, such as its no moving parts, simpler structure, minimizing size and so on. In this paper, a discharge system with multiple corona electrodes disposed in a ring format, is studied by focusing on the electrical and mechanical characteristics. Effective ionic wind generation is due to the corona discharge which depends on electric field. Therefore, the electric field is affected by the voltage, discharge spacing, and distance between each corona electrodes.  相似文献   

5.
研究了常压空气中针-石蜡液面 50Hz 交流电晕放电离子风特性。交流电晕离子风能够引起液体石蜡 显著变形,随着电压升高,变形从漏斗状发展到盆状。在石蜡层厚度为 5mm 时,盆状变形最大,深度达到 5.3mm, 最大作用范围半径 18.8mm,变形产生的压强达到 48.9Pa,远远超过直流针-水电晕放电情况。随着电压升高,从 电晕放电过渡到流注放电时盆状变形依然存在,这一点明显不同于直流针-水电晕放电。研究表明交流电晕离子风 具有优良的驱动绝缘液体介质的巨大潜力。  相似文献   

6.
This paper presents an ionic smoke sensor working without a radioactive ionization source. The presence of smoke particles reduces significantly the effective corona discharge threshold of air by a factor greater than 5. The smoke sensor consists of a wire under an intermediate continuous voltage which generates a current only in presence of smoke. The sensor electric consumption is therefore very low and can operate for a long time. Results of a prototype operating under 600 V with a 25-μm-diameter wire are shown.  相似文献   

7.
Experimental attempts of ignition of sensitive explosive atmospheres by continuous positive corona discharges in coaxial electrode system were conducted in laboratory conditions. Sixty five explosions of hydrogen (H2) and forty of carbon disulphide (CS2) were forced. Both atmospheres were ignited by the minimum power 1–2 W, the minimum ignition current 100–130 μA at the ignition voltages 12–30 kV (for CS2) and 16.5–25 kV (H2). To prevent the energetic sparks, the high voltage resistor 1 MΩ was introduced in series with corona wire.  相似文献   

8.
During a dc corona discharge, the ions' momentum will be transferred to the surrounding neutral molecules, inducing an ionic wind.The characteristics of corona discharge and the induced ionic wind are investigated experimentally and numerically under different polarities using a needle-to-ring electrode configuration.The morphology and mechanism of corona discharge, as well as the characteristics and mechanism of the ionic wind, are different when the needle serves as cathode or anode.Under the different polarities of the applied voltage, the ionic wind velocity has a linear relation with the overvoltage.The ionic wind is stronger but has a smaller active region for positive corona compared to that for negative corona under a similar condition.The involved physics are analyzed by theoretical deduction as well as simulation using a fluid model.The ionic wind of negative corona is mainly affected by negative ions.The discharge channel has a dispersed feature due to the dispersed field, and therefore the ionic wind has a larger active area.The ionic wind of positive corona is mainly affected by positive ions.The discharge develops in streamer mode, leading to a stronger ionic wind but a lower active area.  相似文献   

9.
The effect of the corona wind on the natural convection at absorber of a solar chimney power plant pilot was investigated experimentally. The aim of the study is to improve the efficiency of SCPP through enhanced the heat transfer coefficient of absorber with corona wind. The results show that corona wind enhanced the absorber convective heat transfer coefficient leading to increment in air the velocity and the output power of the SCPP. The amount of heat transfer of pilot increased more than 14.5% when applying voltage of 15 KV and the speed in chimney experienced about 72% amelioration.  相似文献   

10.
Two sets of actuators with triangular tips on their active electrodes (13 corona and 15 DBD) are studied in the laboratory. Far field ionic wind velocity, mass flow and efficiency are measured for all the actuators. The best electrode shape as function of tip sharpness and tips number/unit length is determined for each of the above measurements. The gas velocity increases downstream of the tips in all the actuators, but the DBD flow has a three-dimensional structure more complicated than for coronas. The tips improve the efficiency of all the actuators, and the stability of coronas is remarkably improved.  相似文献   

11.
This paper analyses corona discharge in ambient air with laboratory-scaled wire-to-plate electrostatic precipitator (WPESP). The electric field is behind the electro hydrodynamic (EHD) flow in air. Its measurements provide complementary results for the corona discharge study because the classical theory based on the current and voltage data is unsatisfactory. Taking into account the dynamic air flow velocity is perpendicular to the active wires, measurement method of the positive and negative DC corona current density and electric field, has been introduced. It has been shown also that the dynamic air flow velocity modifies the current density and the electric field distributions on the planes surfaces of the WPESP.  相似文献   

12.
绝缘子是电力系统中非常重要的一类电气设备,由于电、热、机械力、污秽的积累等环境因素的作用会使其绝缘性能出现劣化和下降,可能使得绝缘子的表面形成放电,甚至会发生沿面闪络,危害了电力系统的安全。在此基础上提出基于日盲紫外线精确测试紫外线强度的方法,研制了基于日盲紫外线检测技术的绝缘子电晕放电检测装置,通过不同劣化程度和不同污秽条件的盘行悬式瓷绝缘子的实际测试,验证了该装置通过日盲紫外线强度的监测能够定性判断绝缘子的劣化程度和污秽程度,为输电线路绝缘子实时状态监测提供依据。  相似文献   

13.
To study the characteristics of DC negative corona discharge in a wire-cylinder configuration at an ambient temperature range of 350–850 °C, the IV characteristics and the current composition are analyzed under different conditions. A simple method is proposed to determine the DC corona onset threshold voltage. At high ambient temperatures, in the DC negative corona discharge gap, some electrons are not attached to the electronegative gas molecules and move to the anode tube. Thus, these electrons form an electron current, which may account for most of the total discharging current. The ratio of the electron current to the total discharging current increases with increasing temperature. In a mixture of O2 and N2 and a mixture of CO2 and N2, the ratio of electron current increases with increasing N2 content in the mixtures. The cathode material has little influence on the corona discharge characteristics at high ambient temperatures.  相似文献   

14.
In the present work, the characteristics of direct-current (DC) discharge in a wire-cylinder configuration at an ambient temperature range of 350–850 °C were studied by analyzing photographs of the discharging process and the corresponding VI characteristics, with the aim of facilitating the application of plasma technology in the fields of energy and the environment. The influences of the ambient temperature, the inter-electrode gap, the gas medium and the cathode material on the DC discharge were investigated. The corona-onset threshold voltage (COTV) and the spark-breakdown threshold voltage (SBTV) decrease as the ambient temperature increases, and the SBTV decreases more rapidly. Increasing the inter-electrode gap enlarges the difference between the SBTV and the COTV. After spark breakdown, in an air atmosphere, glow discharge is more likely to take place under conditions of high ambient temperatures or small inter-electrode gaps. The values of the SBTV in different atmospheres have the following relation: air ≈ O2 > CO2. At an ambient temperature range of 350–850 °C and in an atmosphere of N2, glow discharge and arc discharge occur successively as the output voltage of the power supply is increased, while in an atmosphere of O2 and CO2, only corona and arc discharge are successively observed. In an air atmosphere, when the inter-electrode gap is 29 mm, corona, glow and arc discharge occur successively with increasing output voltage when the ambient temperature is 850 °C, while only corona and arc discharge appear when the temperature is 350–750 °C. When the inter-electrode gap is 5 mm in an air atmosphere, corona, glow and arc discharge occur successively in an ambient temperature range of 350–850 °C. The cathode material has a minor influence on the COTV and a more significant influence on the SBTV. In a device using a cathode with a low work function, the SBTV is low, and the power to maintain arc discharge is small.  相似文献   

15.
Numerical modeling of corona discharges has followed the same set of procedures for many years. Corona discharges on large scales are modeled only for ion drift, neglecting ionization. Studies of the ionization zone are often conducted in uniform axisymmetric configurations. However, in configurations that induce non-uniform electric fields, a combination of the two procedures is necessary to accurately capture the discharge physics and ion distribution. The present study conducts numerical simulations of a wire-cylinder corona using both the models and demonstrates the necessity of including the ionization physics to obtain improved accuracy, particularly in the presence of non-uniform electric fields.  相似文献   

16.
Corona discharges in flowing gas are of technological significance for a wide range of applications, ranging from plasma reactors to lightning protection systems. Numerous experimental studies of corona discharges in wind have confirmed the strong influence of wind on the corona current. Many of these studies report global electrical characteristics of the gaseous discharge but do not present details of the spatial structure of the potential field and charge distribution. Numerical simulation can help clarify the role of wind on the ion redistribution and the electric field shielding. In this work, we propose a methodology to solve numerically for the drift region of a DC glow corona using the usual approach of collapsing the ionization region to the electrode surface, but allowing for strong inhomogeneities in the electrical and flow setup. Numerical results for a grounded wire in the presence of an ambient electric field and wind are presented. The model predicts that the effect of the wind is to reduce the extension of the corona over the wire and to shift the center of the ion distribution upstream of the flow. In addition, we find that, even though the near-surface ion distribution is strongly affected by the ion injection law used, the current characteristics and the far field solution remain pretty much unaffected.  相似文献   

17.
The results of experimental observations and mathematical modeling of corona formation on the tips of grounded rods are presented as a function of their tip height, curvature radius, the magnitude and polarity of the applied electric field producing corona. The investigations demonstrate that corona current depends on the active volume of zone in which electric field strength exceeds the breakdown criteria for air. The mathematical model was verified with the experimental data, enabling dependence of corona current on rod tip height, tip radius and applied electric field strength to be quantified with the need for a plethora of experiments.  相似文献   

18.
Corona discharge is a self-sustained discharge which appears at electrodes with a small radius curvature in gas insulation. An almost invisible glow occurs just above the inception voltage. Corona phenomenon is mainly used in electro-technological processes to obtain space charge for electrostatic precipitation, separation of different particles, electrostatic liquid or solid coating, neutralization of space charge, etc. All of these processes rely on a strong nonhomogeneous electric field generated by a point – plate electrode system. When the critical value of the applied voltage is reached, the ionization processes near the point electrode start and give rise to the current between two electrodes. If the pointed electrode is positive, it is possible to observe an anomaly of the current – voltage (I-U) characteristic for the point-plate space. It means that while the voltage is raising the current density decreases in a narrow voltage area (2–3 kV). The anomaly was technically named as negative differential conductivity (dI/dU < 0). Unstable current can have a negative influence on electro-technological processes. The anomaly was detected for different shapes and materials of the electrode as well as for various temperatures and distances between electrodes. An oxidation layer, which appears on the metal electrode, also influences the ionization processes near the pointed electrode and causes a decrease of a current. In this paper measuring of the discharge activity in a point – plate electrode system is presented. Ionization of gas atoms and molecules in a high electric field and the following recombination of electrons and positive ions in the corona region can give rise to high-energy photons which produce new electrons in the field of discharge. Corona discharges are detected by DayCor Corona camera which can register UV emission generated by corona in a day light. The experiment was conducted with various shapes of the pointed electrode and distances between the high voltage and the grounded electrode under applied direct voltage with positive and negative polarity.  相似文献   

19.
In this paper, the corona discharge characterization in terms of current–voltage relationships of a unipolar cylindrical tri-axial charger on the effects of the corona wire diameter and length have been experimentally studied and discussed. A commercial computational fluid dynamics software package, COMSOL Multiphysics™, was used to predict the electric field distribution in the ion generation and charging zones of the charger and the ion penetration through the perforated screen opening on the inner electrode of the charger. It was found from experimental results that both positive and negative charging currents in the charging zone of the charger increased with increasing corona and ion-driving voltages. At the same corona and ion-driving voltages, both positive and negative coronas were decreased with increasing diameter of the corona-wire. Compared with the corona-wire of 22 mm in length, the magnitude of both positive and negative charging currents were markedly higher for corona-wire of 11 mm in length at the same corona voltage. It was found that the charging currents for negative coronas were about 1.2 times higher than those positive coronas at the same corona and ion-driving voltages. Numerical results of the electric field distribution and the ion and charged particles migrations in the discharge and charging zones of the charger is correlated to have the same direction with the experimental results of the current–voltage relationships. Also, this can be used to guidance in describing the electric field distribution and the behavior of ion and charged particle trajectories that cannot be seen from experiments in order to improve the applicably design and refinement of a unipolar cylindrical tri-axial charger.  相似文献   

20.
The plasma-modified clinoptilolite (PMC) nanorods were prepared from natural clinoptilolite (NC) utilizing environmentally-friendly corona discharge plasma. The PMC and NC were characterized by XRD, FT-IR, SEM, EDX, XPS and BET, which confirmed the nanocatalyst formation. The catalytic performance of the PMC in the heterogeneous sono-Fenton-like process was greater than the NC for treatment of phenazopyridine (PhP). The desired amounts were obtained for experimental parameters including initial pH (5), PMC dosage (2 g/L), K2S2O8 concentration (2 mmol/L), ultrasonic power (300 W) and PhP concentration (10 mg/L). Reactive oxygen species scavengers decreased the removal efficiency of the PhP. The treatment process followed pseudo-first order kinetic and seven degradation intermediates were identified by the GC–MS technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号