首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During a dc corona discharge, the ions' momentum will be transferred to the surrounding neutral molecules, inducing an ionic wind.The characteristics of corona discharge and the induced ionic wind are investigated experimentally and numerically under different polarities using a needle-to-ring electrode configuration.The morphology and mechanism of corona discharge, as well as the characteristics and mechanism of the ionic wind, are different when the needle serves as cathode or anode.Under the different polarities of the applied voltage, the ionic wind velocity has a linear relation with the overvoltage.The ionic wind is stronger but has a smaller active region for positive corona compared to that for negative corona under a similar condition.The involved physics are analyzed by theoretical deduction as well as simulation using a fluid model.The ionic wind of negative corona is mainly affected by negative ions.The discharge channel has a dispersed feature due to the dispersed field, and therefore the ionic wind has a larger active area.The ionic wind of positive corona is mainly affected by positive ions.The discharge develops in streamer mode, leading to a stronger ionic wind but a lower active area.  相似文献   

2.
The DC corona discharge in air and the induced ionic wind were investigated in the needle-to-water system at atmospheric pressure. The water deformation was measured under various conditions, and wind pressure and active areas were estimated accordingly. The effects of applied voltage, gap spacing and tip radius on the corona ionic wind were studied and the qualitative analysis was provided. Self-rotation of corona discharge was observed in experiments. The results show that higher voltage or electric field strength results in a stronger ionic wind. The active area increases with applied voltage below a voltage threshold. There is an optimal gap distance for a wider as well as stronger ionic wind and blunter needle we used leads to an enhancement on both the active area and the wind strength. The wind velocity reaches 7 m/s at optimized condition in the present system. The rotation of corona discharge helps to improve the active area and uniformity of the treating area which may be associated with the chemical reaction of the water surface.  相似文献   

3.
The assisted corona discharge is a unique discharge configuration that utilizes multiple collecting electrodes to minimize the voltage required to initiate a corona discharge and to generate an ionic wind. In this work, the geometric parameters that govern the formation of the assisted corona discharge and subsequent ionic wind are evaluated. Flow velocity measurements suggest that the geometry of the electrode spacings is optimized for ionic wind generation when the current flowing to the collector electrode is maximized, and that as the electrode gap is decreased to microscale dimensions, ionic wind production is inhibited.  相似文献   

4.
李小华  包伟伟  王静  蔡忆昔  李慧霞 《发光学报》2015,36(10):1195-1200
针对大功率LED芯片的散热问题,提出了一种基于电晕放电原理的离子风散热方案。通过试验,研究了电晕放电的电学性能,同时探寻了放电电压对制冷效果的影响以及温降随电晕放电功率的变化规律。结果表明,放电间距相同时,对发生器施加负电晕能够在较低的电压下产生离子风,降温效果显著。电晕电流平方根与放电电压呈线性关系。电晕放电功率为1.5 W、放电间距为10 mm时,散热效果最好。  相似文献   

5.
Experimental visualization for ionic wind motion originated from DC corona discharges in a needle-plate electrode system has been investigated. A vapor-phase biacetyl tracer with laser-induced phosphorescence emission is used for optically characterizing the ionic wind profile. The ionic wind blows the excited biacetyl molecules away in continuing the visible phosphorescence emission for a long radiative lifetime. The captured image with elapsing time from the excitation presents the shifting location of radiative tracer along the ionic wind direction. The experimental results show the ionic wind profile enhanced in the electric field direction corresponding to the corona discharge progress. Especially, the ionic wind near an initiating point of corona discharges is focused as an advantage of this optical technique. The ionic wind velocity along the electrode axis can be obtained at the location close enough to the corona discharge initiation point, and the velocity at 0.5 mm from the discharge point is figured out as 9.3 to 19.2 m/s under the condition of the EHD Reynolds number of 0.95×103 to 2.1×103.  相似文献   

6.
离子风动力具有无需机械旋转部件、低功耗及低噪声等优点,在平流层飞艇和太阳能飞机上具有重要的应用潜力。模拟临近空间的低气压环境,采用“线-柱”电极结构电晕放电装置产生离子风,实验测量不同放电条件下离子风推进器产生的推力和推功比,研究了气压、放电电压、电极间隙对离子风动力的影响。仿真和实验结果表明,气压的降低会导致推进器推功比的下降,具体表现为:当电极间隙为2.0 cm,最大推功比由1 atm(1 atm=101 325 Pa)时的17.70 mN/W降低至0.02 atm时的0.24 mN/W;而推功比的损失可以通过增大电极间隙来补偿,当电极间隙增加至14 cm,在0.02 atm的气压环境下,推功比由0.24 mN/W升至0.70 mN/W。通过优化离子风推进器结构,增加电极间隙,离子风动力具备低气压环境下的应用潜力。  相似文献   

7.
An electrohydrodynamic investigation has been carried out in a pin-to-plate gas discharge system to clarify the mechanism of repulsive force generation between a pin and plate electrode at corona discharge. Numerical calculations have been conducted in two steps. First, the axi-cylindrical static corona discharge field was calculated with the finite-element method to deduce the Coulombic body force ρ E applied to the air, where ρ is the charge density and E is the electric field, and then the induced ionic wind was calculated with the finite differential method. The calculated pressure distribution on the plate electrode was on the order of 10 Pa which was in good agreement with the measured pressure distribution. The calculated air velocity at the center was several m/s and was confirmed by a time-of-flight experiment and the velocity distribution near the pin electrode also agreed with measurements using a laser Doppler velocimeter. Pressure and wind velocity were increased at high-applied voltage. These results confirm that the ionic wind is the cause of the repulsive force to the pin electrode at the corona discharge.  相似文献   

8.
We report on the results of experimental investigations of the kinematic structure of ionic wind from a wire electrode placed near a heated plate, which plays the role of the earthed electrode. Experiments are carried out in a wide range of voltages for different polarities of the wire for several values of the electrode gap. We compare the structures of the flows emerging as a result of natural convection in open air for different positions of the plate and in the presence of a fast ionic wind jet that considerably intensifies heat transfer in the boundary layer at the heated planar electrode. Local temperature distributions over the plate surface are obtained, as well as the integral dependences of the effective heat removal on the electric parameters of the corona discharge. The velocity of air flows with ionic wind reaches 4 m/s, and the heat power removed from the plate for fixed overheating increases ninefold compared to the situation with natural convection.  相似文献   

9.
研究了常压空气中针-石蜡液面 50Hz 交流电晕放电离子风特性。交流电晕离子风能够引起液体石蜡 显著变形,随着电压升高,变形从漏斗状发展到盆状。在石蜡层厚度为 5mm 时,盆状变形最大,深度达到 5.3mm, 最大作用范围半径 18.8mm,变形产生的压强达到 48.9Pa,远远超过直流针-水电晕放电情况。随着电压升高,从 电晕放电过渡到流注放电时盆状变形依然存在,这一点明显不同于直流针-水电晕放电。研究表明交流电晕离子风 具有优良的驱动绝缘液体介质的巨大潜力。  相似文献   

10.
This paper reports the experimental and theoretical analysis of the ionic wind velocity and electrical-to-kinetic energy conversion efficiency in an ionic wind generator with six stages in series. Each stage contained a pair of cylindrical multipin-to-ring electrodes. The experiments were carried out in a negative dc corona discharge and the experimental results showed that both the velocity and efficiency are proportional to the square root of the number of stages. The efficiency was found to be proportional to the wind velocity within the experimental range. It was also confirmed that the wind velocity is proportional to the square root of the current and a linear function of voltage. Approximately 1.0% conversion efficiency and stable volumetric flow of more than 2000 L/min were achieved experimentally.  相似文献   

11.
The characteristics of the electric wind attendant on the corona initiation are studied with the aim of reaching a maximal velocity and flow rate. Systems with a single corona point and multi-in-line electrode are used. The dependences of the gas flow rate on the current, voltage, voltage polarity, electrode spacing, corona point geometry, and corona-free electrode design are determined.  相似文献   

12.
A numerical model has been developed for the investigation of water evaporation enhanced by corona wind. The corona wind is generated by a wire electrode charged at a high dc voltage. Only positive corona discharge is considered in the present study. The effect of cross-flow on EHD-enhanced water evaporation is also examined. The results show that water evaporation can be greatly enhanced by corona wind. However, a cross-flow with a high velocity may diminish the effect of corona wind. The numerical results are also compared with experimental data reported in the literature. A satisfactory agreement is found between these results.  相似文献   

13.
We present the results of an experimental study on ionic wind generation by a needle-to-cylinder dc corona discharge. A strong electrical field in the air generates air flow driven by the motion of ionized gas molecules along electric field lines. We measured the ionic wind velocity and discharge current with respect to various electrode geometries, distances between electrodes, and applied voltages. Our measurements suggest an empirical model for the ionic wind velocity as a function of the geometric factors of the collector electrode and the applied electric potential, which is useful for designing ionic wind cooling systems for small electronics.  相似文献   

14.
We report on the results of experimental investigation of a pulsed corona discharge in electric fields with different degrees of nonuniformity under the action of a standard thunderstorm pulse in a wide range of voltages from the origination threshold to the breakdown. A high-sensitivity video camera makes it possible to record microdischarge and streamer processes in air long before the spark breakdown. It is known that the size of the corona discharge sheath increases with the supplied voltage, and the shape of the corona sheath depends on the polarity of the active electrode [1, 2]. It was demonstrated for the first time by Peek [3] that the range of voltages from the initiation of a corona discharge to the spark breakdown increases with the degree of nonuniformity of the electric field. We show that an analogous pattern is observed for a pulsed corona also. Our results show that the form of a pulsed corona discharge considerably depends on the pulse polarity, and a spark breakdown becomes possible when most branches in the streamer corona cover the electrode gap.  相似文献   

15.
王维  杨兰均  高洁  刘帅 《物理学报》2013,62(7):75205-075205
本文搭建了一种无摩擦气垫悬浮测试平台测量了19针和31针-网电极离子风激励器产生的推力特性, 为多针-网电极离子风激励器作为新型动力源提供动力控制方法. 通过研究多针-网间隙、针-针间距、针尖曲率半径和电晕电压电流对离子风激励器推力特性的影响, 提出了在低功耗下产生较大推力的方法, 改善离子风激励器对低功耗与大推力的需求不能同时满足的现状. 关键词: 多针-网电极 离子风 推力 推功比  相似文献   

16.
Corona discharge is one of many methods that convert electrical power into mechanical force. It has been studied for various industrial fields because of its many advantages over conventional motor, such as its no moving parts, simpler structure, minimizing size and so on. In this paper, a discharge system with multiple corona electrodes disposed in a ring format, is studied by focusing on the electrical and mechanical characteristics. Effective ionic wind generation is due to the corona discharge which depends on electric field. Therefore, the electric field is affected by the voltage, discharge spacing, and distance between each corona electrodes.  相似文献   

17.
The formation of nanosecond discharges in atmospheric-pressure air versus the applied pulse polarity and discharge gap geometry is studied. It is shown that the polarity of high-voltage nanosecond pulses and the electrode configuration have a minor effect on the volume discharges under a variety of experimental conditions. When the spacing between needle-like electrodes is large, the discharge is asymmetric and its glow is weakly dependent on the sign of the potential applied to the electrode. Negative voltage pulses applied to the potential electrode generate X-ray radiation from both the surface and volume. For a subnanosecond rise time of the voltage pulse and diffusion character of the discharge, the X-ray radiation comes from the brightly glowing region of a corona discharge. The average values of the fast electron velocity and energy in nitrogen are calculated. At field strengths E/p < 170 kV/cm atm, the average velocity of a fast electron bunch is constant because of central collisions. At field strengths E/p > 170 kV/cm atm, fast electrons run away. Central collisions are the reason for X-ray radiation from the volume.  相似文献   

18.
The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10–45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, and the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.  相似文献   

19.
环形电极单间隙电晕放电伏安特性   总被引:1,自引:1,他引:0       下载免费PDF全文
基于用于直线变压器型驱动源的多间隙气体开关结构,提出一种环形放电间隙与电晕针并联的气体火花间隙。通过测量间隙耐压过程中电晕放电的伏安特性,研究了气体介质、气压、电晕极性、电晕针长度以及针尖对应电极结构等因素对伏安特性的影响。结果表明:以空气为绝缘气体,负极性电晕可获得较稳定的伏安特性;改变电晕针长度和针尖对应电极结构可方便地实现对电晕放电伏安特性的调节以满足开关要求。  相似文献   

20.
《Journal of Electrostatics》2007,65(10-11):655-659
This paper describes a DC surface corona discharge designed to modify the airflow around a flat plate. The electrode configuration consisted of two thin copper layers placed on each side of the plate's attack edge. Discharge optical measurements with a photomultiplier tube indicated that the light emitted by the plasma is pulsating at a frequency that increases with applied voltage. Moreover, with voltage higher than a threshold value, the electric discharge changes regime with brighter pulses. This discharge also induced an “ionic wind” whose velocity was measured with a pressure sensing probe (up to 1 m/s). Experiments with the particle image velocimetry system in a subsonic wind tunnel showed that this discharge can reduce the separated airflow on the flat plate for a flow of 14 m/s (Reynolds number of 187,000).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号