首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on computational modelling the influence of disorder on the rupture process of fibrous materials have been evaluated. This has been done by simulating a bundle of parallel fibers under a constant uniaxial force. The disorder process was introduced by randomly assigning a strength threshold to each fiber of the bundle according to the Weibull distribution. The results indicate that the rupture process is extremely sensitive to the disorder level. In particular, we demonstrated that the load necessary to break a fiber bundle with large disorder is smaller than that necessary to break a fiber bundle with small disorder.  相似文献   

2.
Electrospinning, a technology capable of fabricating ultrafine fibers (microfibers and nanofibers), has been investigated by various research groups for the production of fibrous biopolymer membranes for potential medical applications. In this study, poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), a natural, biocompatible, and biodegradable polymer, was successfully electrospun to form nonwoven fibrous mats. The effects of different electrospinning parameters (solution feeding rate, applied voltage, working distance and needle size) and polymer solution properties (concentration, viscosity and conductivity) on fiber diameter and morphology were systematically studied and causes for these effects are discussed. The formation of beaded fibers was investigated and the mechanism presented. It was shown that by varying electrospinning parameters within the processing window that was determined in this study, the diameter of electrospun PHBV fibers could be adjusted from a few hundred nanometers to a few microns, which are in the desirable range for constructing “biomimicking” fibrous scaffolds for tissue engineering applications.  相似文献   

3.
Xiao-Gang Xia 《中国物理 B》2021,30(7):78801-078801
A highly flexible and continuous fibrous thermoelectric (TE) module with high-performance has been fabricated based on an ultra-long single-walled carbon nanotube fiber, which effectively avoids the drawbacks of traditional inorganic TE based modules. The maximum output power density of a 1-cm long fibrous TE module with 8 p-n pairs can reach to 3436 μW·cm-2, the power per unit weight to 2034 μW·g-1, at a steady-state temperature difference of 50 K. The continuous fibrous TE module is used to detect temperature change of a single point, which exhibits a good responsiveness and excellent stability. Because of its adjustability in length, the flexible fibrous TE module can satisfy the transformation of the temperature difference between two distant heat sources into electrical energy. Based on the signal of the as-fabricated TE module, a multi-region recognizer has been designed and demonstrated. The highly flexible and continuous fibrous TE module with excellent performance shows a great potential in diversified applications of TE generation, temperature detection, and position identification.  相似文献   

4.
现代工业应用与技术领域要求材料具有良好的机械性质与热学性质,Kevlar纤维做为近年来材料领域研究的热点纤维材料,具有高强度、耐高温等良好的性能。纤维材料的性质依赖于自身的结构和组成,热分解过程对于研究材料的结构和热学性质有着十分重要的意义。热红联用技术做为一种新型的联用技术,既能定量又能定性地进行分析,在研究材料的热分解过程中具有明显的优势。由于Kevlar纤维的热分解过程在文献中少有报道,本文首次利用TG-FTIR联用技术对Kevlar纤维在室温到800 ℃的热解过程进行分析,得到了Kevlar纤维热解过程的详细步骤及各个步骤的反应产物。结果表明,Kevlar纤维的热解经历了3个阶段,分别为100~240,240~420,420~800 ℃。在500 ℃之前Kevlar纤维失重很缓慢,第三个阶段是纤维的主要失重阶段,最终固体的残留质量为56.21%。红外光谱数据表明,Kevlar纤维热解过程先释放出游离水,随后发生脱水反应和解聚反应,使纤维分子链断裂。最后纤维碎片进一步反应生成小分子气体,水、氨气、一氧化碳、二氧化碳为主要产物。其中水的析出量逐渐增大;氨气的析出量保持基本一致;一氧化碳仅在515~630 ℃产生,随后即氧化生成二氧化碳;二氧化碳的析出量经历了一个由于一氧化碳转化而产生的增长后,又下降到一定值保持稳定。  相似文献   

5.
We study the elasticity of random fiber networks. Starting from a microscopic picture of the nonaffine deformation fields, we calculate the macroscopic elastic moduli both in a scaling theory and a self-consistent effective medium theory. By relating nonaffinity to the low-energy excitations of the network ("floppy modes"), we achieve a detailed characterization of the nonaffine deformations present in fibrous networks.  相似文献   

6.
The fully segregated flow model (FSFM) was formulated to describe filtration of aerosol nanoparticles in polydisperse fibrous filters made of fibers with different diameters. The model is capable of predicting significantly higher penetration of nanoparticles through polydisperse filters than it may be expected from the classical theory applied to a mean fiber diameter. The model was solved numerically in the case of the log-normal fiber size distribution, and a simple correlation between the actual penetration through a polydisperse filter and the one calculated for the geometric mean fiber diameter was proposed. Equivalent fiber diameter for deposition due to Brownian diffusion was determined and it was found to be dependent on particle size and filter’s polydispersity degree, being significantly greater than any mean fiber diameter. It was noted that it is impossible to select any one universal mean fiber diameter to describe penetration of nanoparticles with different sizes. It was also shown that in the case of a polydisperse fibrous filter the apparent exponent of the Peclet number based on the mean fiber diameter is greater than the expected value of −2/3 for diffusional deposition in a monodisperse filter. This prediction is in agreement with the available experimental data. The FSFM is expected to give the estimation of the upper limit of nanoparticles penetration in polydisperse fibrous filters.  相似文献   

7.
The problem of radiative transfer through a fibrous medium has been formulated rigorously to account for the orientation of the fibers. The fibers in the medium can be either randomly oriented or aligned. It is shown that the radiative properties of the medium, e.g. the extinction efficiency, are strongly dependent on the fiber orientation. A specific case of collimated irradiation on the fibrous medium with fibers randomly oriented in a plane is investigated. Parametric studies are performed to determine the effect of fiber size and fiber optical properties on the transmissivity and reflectivity of the medium.  相似文献   

8.
In this study, for the first time, electrically-conductive tetramethylbenzidine (TMB) nanofibers were synthesized and covered with gold nanoparticles via the in situ redox reaction of TMB and HAuCl4 in ethanol media. The gold nanoparticles were uniformly bound to the fiber surface through the coordination of the amine atoms in TMB molecules with gold nanoparticles. The conductivity of the composite fibrous membrane was found to be 2.1 × 10−3 S cm−1. The developed method described herein is simple and effective for the production of novel electrically-conductive TMB/Au nanofibers. We believed that the composite fibrous materials could be used in various fields such as optoelectronic or sensor applications.  相似文献   

9.
红外光谱在纤维质文物材料鉴别中的应用研究   总被引:1,自引:0,他引:1  
纺织纤维和纸张纤维是常见纤维质文物材料,是构成博物馆精美文物如服饰手稿书画的基本材料,近年来寻求通过无损或微损方法对这一类材料的鉴别以及劣化状况评价备受文物鉴赏家和文物保护工作者的关注。借助傅里叶变换红外光谱,研究博物馆常见纺织纤维材料棉、麻、桑蚕丝、柞蚕丝、羊毛的红外光谱特征和它们的分子结构组成异同,研究传统纸纤维稻草、麦草、龙须草、龙旗松、桑皮红外光谱特征。结果表明:衰减全反射傅里叶变换红外光谱无损分析技术可通过比较3 300~2 800 cm-1 CH,NH,OH振动区间光谱形状以及指纹区峰位以区别不同种类纺织品纤维;碳氧振动纸张纤维最明显光谱差异位置出现在与纤维素OH伸缩振动相关波数3 300 cm-1和与C—O—C相关波数1 332,1 203,1 050 cm-1。文章探索研究红外光谱技术结合主成分分析法在快速鉴别纤维材料中的应用。通过对全光谱数据多元散射校正(MSC)预处理后进行主成分分析,可以把红外光谱十分相似的纺织纤维棉和亚麻、桑蚕丝和柞蚕丝明显分类;对光谱相似的纸纤维,可采用选择不同光谱波数段进行主成分分析,比较发现能够把五种纸纤维明显区分的光谱区间为3 800~2 800 cm-1。本研究为分子光谱无损分析技术应用于文物材料鉴别、科学评估纤维材料保存状况提供基础研究。  相似文献   

10.
吴新生  谢益民 《光谱实验室》2010,27(5):1685-1690
研究发现,植物纤维原料中的木素、纤维素、半纤维素和提取物等主要成分的近红外光谱吸收、同一成分中的不同基团的近红外光谱吸收、不同结构的基团的近红外光谱吸收相互重叠,导致植物纤维原料的近红外吸收光谱十分复杂。然而研究结果表明木素与碳水化合物在C—H键的第一倍频区(1600—1800nm)有明显的吸收差别,木素的苯环在1668nm处有吸收峰,而碳水化合物由于没有苯环C—H键而没有发现有此吸收峰。这反映了植物纤维原料中木素组分在近红外光谱区的信息具有特征吸收,为植物纤维原料的性质分析提供了理论基础。  相似文献   

11.
Otomo  Ryoko  Mori  Kazuki 《显形杂志》2020,23(1):71-80
Journal of Visualization - The effect of fiber tortuosity on fluid permeability in fibrous beds has been investigated. A particle model is employed in which a fiber is replaced by spherical...  相似文献   

12.
X‐ray radiography is a common tool in the study of old master paintings. Transmission imaging can visualize hidden paint layers as well as the structure of the panel or canvas. In some medieval altarpieces, relics seem to have been imbedded in the wooden carrier of paintings. These are most probably thin organic fibrous materials such as paper or textile, which in traditional radiography are shadowed by the more absorbing surrounding material. This paper studies the application potential of synchrotron‐based tomographic and laminographic imaging complemented with phase‐contrast imaging for detection of such relics. The techniques are applied to a dummy painting. The results demonstrate that by using these imaging methods it is possible to three‐dimensionally visualize hidden cavities in panels and detect thin fibrous low‐Z materials sandwiched between a high‐Z paint layer and a thick wooden panel.  相似文献   

13.
The nonwoven fibrous materials of poly-3-hydroxybutyrate obtained by electrospinning were studied. The average diameter of the fibers was correlated with the polymer concentration in solution. As the concentration of poly-3-hydroxybutyrate in the spinning solution increased from 5 to 9 wt %, its crystallinity in the fibrous material increased by 4–5%, and the melting temperature changed insignificantly. A paramagnetic resonance study showed that the density of the amorphous phase of the fibers increased with the polymer concentration in solution. The resistance of the fibrous materials to aggressive environmental factors also increased.  相似文献   

14.
Particle collection in fibrous filters is a very complex problem in filtration theory, and therefore spherical particles are mainly considered. Nevertheless, real particles often have a complicated structure, which influences their deposition behavior. The equivalent diameter concept can be used to account for non-sphericity. We predict the penetration of carbon agglomerates through fibrous filters using a model for spheres and suitable equivalent diameters for the agglomerates. In addition, penetration measurements were performed through a glass fiber filter and a non-woven stainless-steel wire filter. The measured penetrations agreed well with the calculations.  相似文献   

15.
A. Strauß  U. Jauernig  H. Bartelt 《Optik》2010,121(5):490-493
Thermal poling is an attractive method to induce a nonlinear coefficient in silica materials. We have investigated potential silica materials with respect to their suitability for thermal poling and analyzed the achievable depletion thickness in the poling process. Based on this investigation, a fiber was designed and prepared for second harmonic generation. The generation of light in the visible range at a wavelength of 532 nm was successfully demonstrated with a poled fiber and with quasi-phase matching using a pump wavelength of 1064 nm.  相似文献   

16.
光纤光栅温度应变智能传感原理及增敏技术研究   总被引:7,自引:0,他引:7  
郭团  乔学光  贾振安  孙安  陈长勇 《物理》2003,32(3):176-181
文章分析了光纤光栅对温度和应变传感的响应机理,对光纤光栅的纤芯材料选择、光纤光栅的写入方法及封装方法等方面进行了综合评述,在此基础上讨论了实现光纤光栅对温度和应变传感增敏的基本原理和方法,介绍了长周期光纤光栅与光纤布拉格(Bragg)光栅融合测量和如何选用对温度和应变灵敏的纤芯材料,研究了超短脉冲激光直接写入法和如何选用热膨胀系数和弹性模量不同的特种聚合材料对光纤光栅进行封装处理。  相似文献   

17.
 在航天器空间碎片超高速撞击防护领域中,采用高技术纤维作为防护材料是当今防护结构发展的趋势之一,玄武岩纤维(Basalt Fiber)是近年来受到关注的一种高强度纤维。对玄武岩纤维织物受铝合金弹丸超高速撞击时的宏观穿孔损伤特性和细观纤维丝断裂损伤特性进行了分析研究,观察到了冲击高压造成的材料熔化现象,根据实验结果拟合得到了玄武岩纤维布撞击孔的孔径方程,根据纤维丝断口形貌分析了纤维丝的断裂原因。研究结果可为玄武岩纤维材料在空间碎片防护结构中的应用提供有益参考。  相似文献   

18.
《Composite Interfaces》2013,20(5-6):399-410
Textile composites have been used extensively as industrial materials because of the excellent mechanical properties resulting from the continuously oriented fiber bundle. In a study of the mechanical properties, it is important to consider the fiber/matrix interface property as for other composite materials. In a recent study, the fiber/matrix interface is regarded as an interphase that has its own material constants and thickness; consequently, the mechanical properties of a composite can be controlled by specifically designing the interphase. In this study, we applied this concept to braided composites with flexible resin as interphase for the purpose of designing the interphase. In a static tensile test, though there were no improvements in Noncut specimens (normal braided composites), but a Cut specimen (each side of the Noncut specimen was cut) with flexible interphase was improved in fracture load and displacement. The observation of the specimen edge was carried out and it was confirmed that the progress of debonding at the fiber bundle intersection was interrupted by a flexible interphase, and a matrix crack did not occur in the Cut specimen with flexible interphase. In a fiber bundle pull-out test, it was confirmed that debonding progressed not into the fiber/resin interface but into the flexible interphase in the specimen with flexible interphase, and the interfacial property at the fiber bundle intersection was improved.  相似文献   

19.
王闵  刘复飞  周贤  戴玉堂  杨明红 《物理学报》2017,66(7):70703-070703
将功能敏感材料与光纤在物理层面进行有机融合,充分发挥光纤传感器在结构集成、材料集成等方面的优势,将有望发展新型的光纤传感器件和系统.本文综述了飞秒激光光纤微加工技术分别在标准的单模光纤和光纤光栅上制备微结构,再结合敏感材料制备技术,实现在物理层面上光纤传感器材料和结构的集成和融合,探索实现新型高性能的光纤传感新技术.  相似文献   

20.
In recent years drug-loaded nanofibers prepared using solution electrospinning methods have been actively studied. However, there are a number of problems connected to their solution electrospinning with respect to medical applications because of the hazards associated with the residual solvents. To avoid the use of solvents in this study we prepared and evaluated drug-loaded polylactide (PLA) fiber webs using a laser-electrospinning (LES) type of a melt electrospinning process. The structures and properties of the obtained drug-loaded PLA fiber webs were evaluated by scanning electron microscopy, fluorescence microscopy, wide-angle X-ray diffraction and UV–vis spectrometry. As shown by the various characterization techniques, we employed LES to prepare PLA nanofiber webs with average fiber diameters of 4.21 and 0.67?μm. Additionally, the webs were loaded with argatroban, a thrombin inhibitor, resulting in amorphous structures for both the argatroban and the PLA matrix. An in-vitro investigation of the drug release behavior of the webs revealed that higher release rates occurred for the fiber samples with the small fiber diameters, particularly in comparison with melt spun fibers with an average diameter of 150?μm. Overall, we expect that the herein described drug-loaded PLA nanofiber webs can be applied as medical materials with drug delivery system functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号