共查询到4条相似文献,搜索用时 0 毫秒
1.
Abdul-Wali Ajlouni Eman H. Hamdan Rasha Awwadh Eid Alshalawi Mohammed Rafi Shaik Mujeeb Khan Mufsir Kuniyil Abdulrahman Alwarthan Mohammad Azam Ansari Merajuddin Khan Hamad Z. Alkhathlan Jilani P. Shaik Syed Farooq Adil 《Molecules (Basel, Switzerland)》2023,28(1)
Green syntheses of metallic nanoparticles using plant extracts as effective sources of reductants and stabilizers have attracted decent popularity due to their non-toxicity, environmental friendliness and rapid nature. The current study demonstrates the ecofriendly, facile and inexpensive synthesis of silver nanoparticles (AP-AgNPs) using the extract of aerial parts of the Anthemis pseudocotula Boiss. plant (AP). Herein, the aerial parts extract of AP performed a twin role of a reducing as well as a stabilizing agent. The green synthesized AP-AgNPs were characterized by several techniques such as XRD, UV-Vis, FT-IR, TEM, SEM and EDX. Furthermore, the antimicrobial and antibiofilm activity of as-prepared AP-AgNPs were examined by a standard two-fold microbroth dilution method and tissue culture plate methods, respectively, against several Gram-negative and Gram-positive bacterial strains and fungal species such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), multidrug-resistant Pseudomonas aeruginosa (MDR-PA) and Acinetobacter baumannii (MDR-AB), methicillin-resistant S. aureus (MRSA) and Candida albicans (C. albicans) strains. The antimicrobial activity results clearly indicated that the Gram-negative bacteria MDR-PA was most affected by AgNPs as compared to other Gram-negative and Gram-positive bacteria and fungi C. albicans. Whereas, in the case of antibiofilm activity, it has been found that AgNPs at 0.039 mg/mL, inhibit biofilms formation of Gram-negative bacteria i.e., MDR-PA, E. coli, and MDR-AB by 78.98 ± 1.12, 65.77 ± 1.05 and 66.94 ± 1.35%, respectively. On the other hand, at the same dose (i.e., 0.039 mg/mL), AP-AgNPs inhibits biofilm formation of Gram-positive bacteria i.e., MRSA, S. aureus and fungi C. albicans by 67.81 ± 0.99, 54.61 ± 1.11 and 56.22 ± 1.06%, respectively. The present work indicates the efficiency of green synthesized AP-AgNPs as good antimicrobial and antibiofilm agents against selected bacterial and fungal species. 相似文献
2.
Muhammad Naveed Bakhtawar Bukhari Tariq Aziz Sumera Zaib Muhammad Adil Mansoor Ayaz Ali Khan Muhammad Shahzad Anas S. Dablool Mashael W. Alruways Abdulraheem Ali Almalki Abdulhakeem S. Alamri Majid Alhomrani 《Molecules (Basel, Switzerland)》2022,27(13)
In this study, the antibacterial and antifungal properties of silver nanoparticles synthesized with the aqueous plant extract of Acer oblongifolium leaves were defined using a simplistic, environmentally friendly, reliable, and cost-effective method. The aqueous plant extract of Acer oblongifolium, which served as a capping and reducing agent, was used to biosynthesize silver nanoparticles. UV visible spectroscopy, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and scanning electron microscopy were used to analyze the biosynthesized Acer oblongifolium silver nanoparticles (AgNPs). Gram-positive bacteria (Bacillus paramycoides and Bacillus cereus) and Gram-negative bacteria (E. coli) were used to test the AgNPs’ antibacterial activity. The presence of different functional groups was determined by FTIR. The AgNPs were rod-like in shape. The nanoparticles were more toxic against Escherichia coli than both Bacillus cereus and Bacillus paramycoides. The AgNPs had IC50 values of 6.22 and 9.43 and mg/mL on HeLa and MCF-7, respectively, proving their comparatively strong potency against MCF-7. This confirmed that silver nanoparticles had strong antibacterial activity and antiproliferative ability against MCF-7 and HeLa cell lines. The mathematical modeling revealed that the pure nanoparticle had a high heat-absorbing capacity compared to the mixed nanoparticle. This research demonstrated that the biosynthesized Acer oblongifolium AgNPs could be used as an antioxidant, antibacterial, and anticancer agent in the future. 相似文献
3.
Green methods using biological extracts, in particular plant-based solutions, have shown great potential for silver nanoparticle synthesis. A microwave-assisted single-step phytosynthesis of silver nanoparticles is described in the present study. The aqueous extract obtained from the Rosa santana (rose) petals was used for the first time in the synthesis. The synthesized nanoparticles obtained after optimized microwave conditions for time and temperature were analyzed by ultraviolet–visible spectroscopy (UV–Vis), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Zeta-size analysis. The results obtained from the characterization studies showed that the synthesized nanoparticles were nearly spherical in shape with sizes from 6.52?nm to 25.24?nm with an average particle size of 14.48?nm with a face-centered cubic structure. The antibacterial activities of the synthesized nanoparticles were evaluated and revealed that the silver nanoparticles displayed good inhibition against both Gram-negative and Gram-positive bacteria. Also, the cytotoxic effect of the silver nanoparticles on a mouse fibroblast cell line (L929) was studied by a cell viability assay. The results showed that phytosynthesized silver nanoparticles were nontoxic to the healthy normal cell line at all tested concentrations. 相似文献
4.
Jamal Moideen Muthu Mohamed Ali Alqahtani Thankakan Vimala Ajay Kumar Adel Al Fatease Taha Alqahtani Venkatesan Krishnaraju Fazil Ahmad Farid Menaa Ali Alamri Ranjini Muthumani Rajendran Vijaya 《Molecules (Basel, Switzerland)》2022,27(1)
Green synthesis of silver nanoparticles (AgNPs) was synthesized from fresh garlic extract coupled with isoniazid hydrazide (INH), a commonly used antibiotic to treat tuberculosis. A molecular docking study conducted with the selected compounds compared with anthranilate phosphoribosyltransferase (trpD) from Mycobacterium tuberculosis. The aqueous extract of garlic was prepared and mixed with silver nitrate (AgNO3) solution for the superfast synthesis of stable AgNPs. INH was then conjugated with AgNPs at different ratios (v/v) to obtain stable INH-AgNPs conjugates (AgNCs). The resulting AgNCs characterized by FTIR spectra revealed the ultrafast formation of AgNPs (<5 s) and perfectly conjugated with INH. The shifting of λmax to longer wavelength, as found from UV spectral analysis, confirmed the formation of AgNCs, among which ideal formulations (F7, F10, and F13) have been pre-selected. The zeta particle size (PS) and the zeta potential (ZP) of AgNPs were found to be 145.3 ± 2.1 nm and −33.1 mV, respectively. These data were significantly different compared to that of AgNCs (160 ± 2.7 nm and −14.4 mV for F7; 208.9 ± 2.9 nm and −19.8 mV for F10; and 281.3 ± 3.6 nm and −19.5 mV for F13), most probably due to INH conjugation. The results of XRD, SEM and EDX confirmed the formation of AgNCs. From UV spectral analysis, EE of INH as 51.6 ± 5.21, 53.6 ± 6.88, and 70.01 ± 7.11 %, for F7, F10, and F13, respectively. The stability of the three formulations was confirmed in various physiological conditions. Drug was released in a sustainable fashion. Besides, from the preferred 23 compounds, five compounds namely Sativoside R2, Degalactotigonin, Proto-desgalactotigonin, Eruboside B and Sativoside R1 showed a better docking score than trpD, and therefore may help in promoting anti-tubercular activity. 相似文献