首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of a hydrogen bond in which a methyl group of the (MeOH)2H+ ion acts as a proton donor is examined. The fundamental vibration frequencies of this ion were calculated for different numbers and strengths of CH…O bonds. The atomic charges in neutral ((MeOH) n ,n=1–4) and protonated ((MeOH) m H+,m=2–6) associates of methanol molecules were also calculated. The experimentally observed decrease in the v(CH) vibration frequencies of the (MeOH)2H+ ion to 2890 cm−1 and 2760 cm−1 is attributable to the fact that each methyl group of the ion is involved in formation of two CH…O bonds with strength of −12.5 kJ mol−1. The proton-donating ability of the CH bond depends on the charge on its H atom; however, it does not correlate with the dipole moment of this bond. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 306–312, February, 1999.  相似文献   

2.
Reactions of cis,trans,cis-[Ir(H)2(PPh3)2(MeOH)2]PF6 in MeOH with the imines Ph(R′)C=NR under 1 atm H2 precipitate the neutral, Ir(III)-dihydrido complexes [Ir(H)2{RN=C(R′)(o-C 6H4)}(PPh3)2], where R = alkyl or benzyl, and R′ = Ph, H, or Me; the dihydrides are well characterized through elemental analysis, NMR and IR data and, in one case, with the imine Ph2C=NCH2Ph, an X-ray structure. These products are formed via intermediate ortho-metallated species, exemplified by [Ir(H){PhCH2N=CPh(o-C 6H4)}(PPh3)2(MeOH)]PF6 in the case of the Ph2C=NCH2Ph reaction; the intermediate then reacts with H2 (via net heterolytic cleavage: H2 → H + H+) to give the neutral dihydride and HPF6 as co-product. The ‘unique’ imine PhCH=NPh, under the same conditions, does not form a dihydride and instead is readily catalytically hydrogenated to PhCH2N(H)Ph; remarkably, we have shown previously that this imine is ‘unique’ within the corresponding Rh system in that no catalytic hydrogenation occurs because the amine product ‘poisons’ the Rh centre by coordination through the N-phenyl ring.  相似文献   

3.
Two crystal samples, sodium 5-methylisophthalic acid monohydrate (C9H6O4Na2·H2O, s) and sodium isophthalic acid hemihydrate (C8H4O4Na2·1/2H2O, s), were prepared from water solution. Low-temperature heat capacities of the solid samples for sodium 5-methylisophthalic acid monohydrate (C9H6O4Na2·H2O, s) and sodium isophthalic acid hemihydrate (C8H4O4Na2·1/2H2O, s) were measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 379 K. The experimental values of the molar heat capacities in the measured temperature region were fitted to a polynomial equation on molar heat capacities (C p,m) with the reduced temperatures (X), [X = f(T)], by a least-squares method. Thermodynamic functions of the compounds (C9H6O4Na2·H2O, s) and (C8H4O4Na2·1/2H2O, s) were calculated based on the fitted polynomial equation. The constant-volume energies of combustion of the compounds at T = 298.15 K were measured by a precise rotating-bomb combustion calorimeter to be Δc U(C9H6O4Na2·H2O, s) = −15428.49 ± 4.86 J g−1 and Δc U(C8H4O4Na2·1/2H2O, s) = −13484.25 ± 5.56 J g−1. The standard molar enthalpies of formation of the compounds were calculated to be Δ f H m θ (C9H6O4Na2·H2O, s) = −1458.740 ± 1.668 kJ mol−1 and Δ f H m θ (C8H4O4Na2·1/2H2O, s) = −2078.392 ± 1.605 kJ mol−1 in accordance with Hess’ law. The standard molar enthalpies of solution of the compounds, Δ sol H m θ (C9H6O4Na2·H2O, s) and Δ sol H m θ (C8H4O4Na2·1/2H2O, s), have been determined as being −11.917 ± 0.055 and −29.078 ± 0.069 kJ mol−1 by an RD496-2000 type microcalorimeter. In addition, the standard molar enthalpies of hydrated anion of the compounds were determined as being Δ f H m θ (C9H6O4 2−, aq) = −704.227 ± 1.674 kJ mol−1 and Δ f H m θ (C8H4O4Na2 2−, aq) = −1483.955 ± 1.612 kJ mol−1, from the standard molar enthalpies of solution and other auxiliary thermodynamic data through a thermochemical cycle.  相似文献   

4.
The oxidation of [CoII(nta)(ox)(H2O)2]3− and [CoII(nta)(ph)(H2O)2]3− (nta = nitrilotriacetate, ox = oxalic acid and ph = phthalic acid) by periodate have been studied kinetically in aqueous solution over 20–40 °C and a variety of pH ranges. The rate of oxidation of [CoII(nta)(ox)(H2O)2]3− by periodate, obeys the following equation: d[CoIII]/dt = [CoII(nta)(ox)(H2O)23−][H5IO6] {k 4 K 5 + (k 5 K 6 K 2/[H+]} while the reaction of [CoII(nta)(ph)(H2O)2]3− with periodate in aqueous acidic medium obeys the following rate law: d[CoIII]/dt = k 6 K 8[CoII]T [IVII]T/{1 + [H+]/K 7 + K 8[IVII] T }. Initial cobalt(III) products were formed and slowly converted to final products, fitting an inner-sphere mechanism. Thermodynamic activation parameters have been calculated. A common mechanism for the oxidation of ternary nitrilotriacetatocobalt(II) complexes by periodate is proposed and supported by an excellent isokinetic relationship between ΔH* and ΔS* values for these reactions.  相似文献   

5.
Four pyridinecarboxamide iron dicyanide building blocks and one Mn(III) compound have been employed to assemble cyanide-bridged heterometallic complexes, resulting in a series of trinuclear cyanide-bridged FeIII–MnII complexes: {[Mn(DMF)2 (MeOH)2][Fe(bpb)(CN)2]2}·2DMF (1), {[Mn(MeOH)4][Fe(bpmb)(CN)2]2}·2MeOH·2H2O (2), {[Mn(MeOH)4][Fe(bpdmb)(CN)2]2}·2MeOH·2H2O (3) and {[Mn(MeOH)4][Fe(bpClb)(CN)2]2}·4MeOH (4) (bpb2− = 1,2-bis(pyridine-2-carboxamido)benzenate, bpmb2− = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate, bpdmb2− = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate, bpClb2− = 1,2-bis(pyridine-2-carboxamido)-4-chloro-benzenate). Single-crystal X-ray diffraction analysis shows their similar sandwich-like structures, in which the two cyanide-containing building blocks act as monodentate ligands through one of their two cyanide groups to coordinate the Mn(II) center. Investigation of the magnetic properties of these complexes reveals antiferromagnetic coupling between the neighboring Fe(III) and Mn(II) centers through the bridging cyanide group. A best fit to the magnetic susceptibilities of complexes 1 and 3 gave the magnetic coupling constants J = −1.59(2) and −1.32(4) cm−1, respectively.  相似文献   

6.
The effect of the concentration of water on the rate of reduction of molecular nitrogen to hydrazine by niobium(iii) hydroxide in alkaline H2O−MeOH and D2O−MeOD mixtures was studied. In both cases, the reaction rate is maximum when [H2O]=4 mol L−1, and the inverse isotopic effect (K D/k H>1) is observed when [H2O]<20 mol L−1. Similar regularity was observed for the reaction of hydrogen elimination. It was found that HD is formed in the H2O−MeOH system in the presence of D2. The conclusion was made that the ratedetermining stage in hydrazine formation is the transfer of a hydride ion to the dinitrogen molecule coordinated to the binuclear NbIII center. A kinetic scheme satisfactorily explaining the effect of the concentration of water ([H2O]=1.5−49.0 mol L−1) on the reaction rate constant was proposed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1600–1604, September, 1997.  相似文献   

7.
The determination of seven arsenic species in seafood was performed using ion exchange chromatography on an IonPac AS7 column with inductively coupled plasma mass spectrometry detection after microwave assisted extraction. The effect of five parameters on arsenic extraction recoveries was evaluated in certified reference materials. The recoveries of total arsenic and of arsenic species with the two best extraction media (100% H2O and 80% aqueous MeOH) were generally similar in the five seafood certified reference materials considered. However, because MeOH co-elutes with arsenite, which would result in a positively biased arsenite concentration, the 100% H2O extraction conditions were selected for validation of the method. Figures of merit (linearity, LOQs (0.019-0.075 mg As kg−1), specificity, trueness (with recoveries between 82% (As(III)) and 104% (As(V) based on spikes or certified concentrations), repeatability (3-14%), and intermediate precision reproducibility (9-16%) of the proposed method were satisfactory for the determination of arsenite, monomethylarsonic acid, dimethylarsinic acid, arsenate, arsenobetaine and arsenocholine in fish and shellfish. The performance criteria for trimethylarsine oxide, however, were less satisfactory. The method was then applied to 65 different seafood samples. Arsenobetaine was the main species in all samples. The percentage of inorganic arsenic varied between 0.4-15.8% in shellfish and 0.5-1.9% at the utmost in fish. The main advantage of this method that uses only H2O as an extractant and nitric acid as gradient eluent is its great compatibility with the long-term stability of both IEC separation and ICP-MS detection.  相似文献   

8.
The complexation reactions between Mg2+, Ca2+, Ag+ and Cd2+ metal cations with N-phenylaza-15-crown-5 (Ph-N15C5) were studied in acetonitrile (AN)–methanol (MeOH), methanol (MeOH)–water (H2O) and propanol (PrOH)–water (H2O) binary mixtures at different temperatures using the conductometric method. The conductance data show that the stochiometry of all of the complexes with Mg2+, Ca2+, Ag+ and Cd2+ cations is 1:1 (L:M). The stability of the complexes is sensitive to the solvent composition and a non-linear behaviour was observed for variation of log K f of the complexes versus the composition of the binary mixed solvents. The selectivity order of Ph-N15C5 for the metal cations in neat MeOH is Ag+>Cd2+>Ca2+>Mg2+, but in the case of neat AN is Ca2+>Cd2+>Mg2+>Ag+. The values of thermodynamic parameters (ΔH c o , ΔS c o ) for formation of Ph-N15C5–Mg2+, Ph-N15C5–Ca2+, Ph-N15C5–Ag+ and Ph-N15C5–Cd2+ complexes were obtained from temperature dependence of stability constants and the results show that the thermodynamics of complexation reactions is affected by the nature and composition of the mixed solvents.  相似文献   

9.
A ternary binuclear complex of dysprosium chloride hexahydrate with m-nitrobenzoic acid and 1,10-phenanthroline, [Dy(m-NBA)3phen]2·4H2O (m-NBA: m-nitrobenzoate; phen: 1,10-phenanthroline) was synthesized. The dissolution enthalpies of [2phen·H2O(s)], [6m-HNBA(s)], [2DyCl3·6H2O(s)], and [Dy(m-NBA)3phen]2·4H2O(s) in the calorimetric solvent (VDMSO:VMeOH = 3:2) were determined by the solution–reaction isoperibol calorimeter at 298.15 K to be \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [2phen·H2O(s), 298.15 K] = 21.7367 ± 0.3150 kJ·mol−1, \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [6m-HNBA(s), 298.15 K] = 15.3635 ± 0.2235 kJ·mol−1, \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [2DyCl3·6H2O(s), 298.15 K] = −203.5331 ± 0.2200 kJ·mol−1, and \Updelta\texts H\textmq \Updelta_{\text{s}} H_{\text{m}}^{\theta } [[Dy(m-NBA)3phen]2·4H2O(s), 298.15 K] = 53.5965 ± 0.2367 kJ·mol−1, respectively. The enthalpy change of the reaction was determined to be \Updelta\textr H\textmq = 3 6 9. 4 9 ±0. 5 6   \textkJ·\textmol - 1 . \Updelta_{\text{r}} H_{\text{m}}^{\theta } = 3 6 9. 4 9 \pm 0. 5 6 \;{\text{kJ}}\cdot {\text{mol}}^{ - 1} . According to the above results and the relevant data in the literature, through Hess’ law, the standard molar enthalpy of formation of [Dy(m-NBA)3phen]2·4H2O(s) was estimated to be \Updelta\textf H\textmq \Updelta_{\text{f}} H_{\text{m}}^{\theta } [[Dy(m-NBA)3phen]2·4H2O(s), 298.15 K] = −5525 ± 6 kJ·mol−1.  相似文献   

10.
A novel gelling method was studied to stabilize phase change material Na2HPO4 · 12H2O with amylose grafted sodium acrylate. Gelled Na2HPO4 · 12H2O shows stable heat storage performance prepared at optimized conditions: 2.7mass/mass% sodium acrylate, 0.4 mass/mass% amylose, 0.05–0.09 mass/mass% N, N′-methylenebisacrylamide, 0.05–0.09 mass/mass% K2S2O8 and Na2SO3 (mass ratio 1:1), at 50 °C. Na2HPO4 · 12H2O was dispersed in gel network as tiny crystals less than 0.1 mm. Melting points were in the range 35.4 ± 2 °C. Short-term thermal cycling proves the effectiveness of the novel method for eliminating phase separation in the gelled salt. Adiabatic calorimetric measurement of heat capacities shows two phase transitions, which correspond to melting of Na2HPO4 · 12H2O and freezable bond water in gel, respectively. Heat of fusion of pure Na2HPO4 · 12H2O was determined as 260.9 J g−1. Distribution of extra water is: free water:freezable water:nonfreezing water = 0:0.85:0.15.  相似文献   

11.
The heats of solution of tetrabutylammonium bromide have been measured in mixtures of formamide (FA) with methanol (MeOH) and ethylene glycol (EG) at 313.15 K by calorimetric method. The standard enthalpies of solution in binary mixtures have been extrapolated to infinite dilution by Redlich–Rosenfeld–Meyer type equation using the literary data at 298.15 K and the present paper data at 313.15 K. The Debye–Hückel limiting law slope A H required for calculation of the ∆sol H 0 value has been obtained with application the new additive scheme of determination of the physic-chemical characteristics of binaries. The scheme is tested on the example of Bu4NBr solutions in FA–MeOH mixture at 298.15 K. Its application yields the ∆sol H 0 value very closed on the ones determined with the real (non-additive) characteristics of binaries. The standard enthalpies of solution extrapolated by Redlich–Rosenfeld–Meyer type equation are in a good agreement with the ones computed in terms of the Debye–Hückel theory in the second approximation. The heat capacities characteristics of Bu4NBr have been calculated in H2O–FA, MeOH–FA and EG–FA mixtures using the literary and present data. The sequence of solvents H2O > FA > EG > MeOH located on their ability to solvophobic solvation found by us earlier for enthalpic characteristics is confirmed by the ∆C p 0 values. The comparison of thermochemical characteristics of Bu4NBr solutions in aqueous and non-aqueous mixtures containing FA has been carried out. The own structure of water remains in the region of small additions of formamide to co-solvents. It considerably differs the H2O–FA mixture from the investigated non-aqueous systems.  相似文献   

12.
Derivative of 8-hydroxyquinoline i.e. Clioquinol is well known for its antibiotic properties, drug design and coordinating ability towards metal ion such as Copper(II). The structure of mixed ligand complexes has been investigated using spectral, elemental and thermal analysis. In vitro anti microbial activity against four bacterial species were performed i.e. Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, Bacillus substilis and found that synthesized complexes (15–37 mm) were found to be significant potent compared to standard drugs (clioquinol i.e. 10–26 mm), parental ligands and metal salts employed for complexation. The kinetic parameters such as order of reaction (n = 0.96–1.49), and the energy of activation (E a = 3.065–142.9 kJ mol−1), have been calculated using Freeman–Carroll method. The range found for the pre-exponential factor (A), the activation entropy (S* = −91.03 to−102.6 JK−1 mol−1), the activation enthalpy (H* = 0.380–135.15 kJ mol−1), and the free energy (G* = 33.52–222.4 kJ mol−1) of activation reveals that the complexes are more stable. Order of stability of complexes were found to be [Cu(A4)(CQ)OH] · 4H2O > [Cu(A3)(CQ)OH] · 5H2O > [Cu(A1)(CQ)OH] · H2O > [Cu(A2)(CQ)OH] · 3H2O  相似文献   

13.
We have investigated gas‐phase fragmentation reactions of protonated benzofuran neolignans (BNs) and dihydrobenzofuran neolignans (DBNs) by accurate‐mass electrospray ionization tandem and multiple‐stage (MSn) mass spectrometry combined with thermochemical data estimated by Computational Chemistry. Most of the protonated compounds fragment into product ions B ([M + H–MeOH]+), C ([ B –MeOH]+), D ([ C –CO]+), and E ([ D –CO]+) upon collision‐induced dissociation (CID). However, we identified a series of diagnostic ions and associated them with specific structural features. In the case of compounds displaying an acetoxy group at C‐4, product ion C produces diagnostic ions K ([ C –C2H2O]+), L ([ K –CO]+), and P ([ L –CO]+). Formation of product ions H ([ D –H2O]+) and M ([ H –CO]+) is associated with the hydroxyl group at C‐3 and C‐3′, whereas product ions N ([ D –MeOH]+) and O ([ N –MeOH]+) indicate a methoxyl group at the same positions. Finally, product ions F ([ A –C2H2O]+), Q ([ A –C3H6O2]+), I ([ A –C6H6O]+), and J ([ I –MeOH]+) for DBNs and product ion G ([ B –C2H2O]+) for BNs diagnose a saturated bond between C‐7′ and C‐8′. We used these structure‐fragmentation relationships in combination with deuterium exchange experiments, MSn data, and Computational Chemistry to elucidate the gas‐phase fragmentation pathways of these compounds. These results could help to elucidate DBN and BN metabolites in in vivo and in vitro studies on the basis of electrospray ionization ESI‐CID‐MS/MS data only.  相似文献   

14.
Arene ruthenium complexes containing long-chain N-ligands L1 = NC5H4–4-COO–C6H4–4-O–(CH2)9–CH3 or L2 = NC5H4–4-COO–(CH2)10–O–C6H4–4-COO–C6H4–4-C6H4–4-CN derived from isonicotinic acid, of the type [(arene)Ru(L)Cl2] (arene = C6H6, L = L1: 1; arene = p-MeC6H4Pr i , L = L1: 2; arene = C6Me6, L = L1: 3; arene = C6H6, L = L2: 4; arene = p-MeC6H4Pr i , L = L2: 5; arene = C6Me6, L = L2: 6) have been synthesized from the corresponding [(arene)RuCl2]2 precursor with the long-chain N-ligand L in dichloromethane. Ruthenium nanoparticles stabilized by L1 have been prepared by the solvent-free reduction of 1 with hydrogen or by reducing [(arene)Ru(H2O)3]SO4 in ethanol in the presence of L1 with hydrogen. These complexes and nanoparticles show a high anticancer activity towards human ovarian cell lines, the highest cytotoxicity being obtained for complex 2 (IC50 = 2 μM for A2780 and 7 μM for A2780cisR).  相似文献   

15.
The NMR spectra of [2.2]paracyclophane with β- or γ-cyclodextrin in DMF-d7 at room temperature do not show significant complexation, while HPLC of the complexes in mixed H2O:alcohol solvents demonstrate complexation with different stoichiometries. At 243 K in DMF solution the H3 and H5 NMR signals of γ-cyclodextrin (but not β) exhibit complexation-induced chemical shifts denoting complex formation. According to HPLC, at room temperature the [2.2]paracyclophane complex with β-cyclodextrin in 20% H2O:EtOH exhibits 1:2 stoichiometry with K 1 = 1×102 ± 2, K 2 = 9.0×104 ± 2×103 (K = 9×106) while that with γ-cyclodextrin in 50% H2O:MeOH exhibits 1:1 stoichiometry with K 1 = 4×103 ± 150 M−1. Thermodynamic parameters for both complexes have been estimated from the retention time temperature dependence. For the β-cyclodextrin complexation at 25°C ΔG 0 CD is −39.7 kJ mol−1 while ΔH 0 CD and ΔS 0 CD are −88.2 kJ mol−1 and −0.16 kJ mol−1 K−1. For γ-cyclodextrin, the corresponding values are ΔG 0 CD = −20.5 kJ mol−1, ΔH 0 CD = −33.5 kJ mol−1 and ΔS 0 CD = −0.04 kJ mol−1 K−1.   相似文献   

16.
Abstract  Two novel inorganic–organic hybrid sandwich-type phosphotungstates [H2en][Ni(en)2]2[{(α-B-PW9O34)2Ni4(H2O)2}{Ni(en)2(H2O)}2] · 5H2O (1) and [Ni(en)2][Ni(en)2(H2O)2][{(α-B-PW9O34)2Ni4(Hen)2}{Ni(en)2(H2O)}2] · 10H2O (2) (en = ethylenediamine) have been synthesized by the hydrothermal reactions of trivacant precursors Na9[α-A-PW9O34] · 7H2O/Na12[α-P2W15O56] · 18H2O with NiCl2 · 6H2O in the presence of en and structurally characterized by IR spectra, elemental analyses and thermogravimetric analyses. X-ray crystallographic analyses indicate that 1 is made up of inorganic polyoxoanions [Ni4(H2O)2(α-B-PW9O34)2]10– decorated by nickel-organoamine groups, while 2 is constructed from inorganic–organic hybrid polyoxoanions [(α-B-PW9O34)2Ni4(Hen)2]8– decorated by nickel-organoamine groups. Graphical Abstract   Hydrothermal Synthesis and Structural Characterization of Two Organic–Inorganic Hybrids based on Sandwich-type Polyoxometalates Bing Li, Zhao Dan, Shou-Tian Zheng, Guo-Yu Yang   相似文献   

17.
Abstract  Two novel organic–inorganic composite phosphotungstates, [H9{Ce(α-PW11O39)2}Cu(en)2] · 6H2O (1) and H7[Cu(en)2{Er(α-PW11O39)2}Cu(en)2] · 12H2O (2) (en = ethylenediamine) have been synthesized by the hydrothermal reaction of the trivacant Keggin polyoxoanion [α-A-PW9O34]9− with CeIII or ErIII ions in the presence of Cu2+ ions and en, and structurally characterized by IR spectra, elemental analysis and thermogravimetric analysis. X-ray crystallographic analyses indicate that they are all built by sandwich-type [Ln(α-PW11O39)2]11− (Ln = CeIII, ErIII) polyoxoanions and [Cu(en)2]2+ cations generating infinite one-dimensional arrangements. To our knowledge, this 1-D chain structures constituted by mono-Ln sandwiched POM units and transition-metal complex cations are very rare. Graphical Abstract  Two novel organic–inorganic composite phosphotungstates, [H9{Ce(α-PW11O39)2}Cu(en)2] · 6H2O (1) and H7[Cu(en)2{Er(α-PW11O39)2}Cu(en)2] · 12H2O (2) (en = ethylenediamine) have been synthesized by the hydrothermal reaction of the trivacant Keggin polyoxoanion [α-A-PW9O34]9− with CeIII or ErIII ions in the presence of Cu2+ ions and en, and structurally characterized by IR spectra, elemental analysis and thermogravimetric analysis. X-ray crystallographic analyses indicate that they are all built by sandwich-type [Ln(α-PW11O39)2]11− (Ln = CeIII, ErIII) polyoxoanions and [Cu(en)2]2+ cations generating infinite one-dimensional arrangements. To our knowledge, this 1-D chain structures constituted by mono-Ln sandwiched POM units and transition-metal complex cations are very rare.   相似文献   

18.
Hydrophobic silica aerogels have been prepared using the rapid supercritical extraction (RSCE) technique. The RSCE technique is a one-step methanol supercritical extraction method for producing aerogel monoliths in 3 to 8 h. Standard aerogels were prepared from a tetramethoxysilane (TMOS) recipe with a molar ratio of TMOS:MeOH:H2O:NH4OH of 1.0:12.0:4.0:7.4 × 10−3. Hydrophobic aerogels were prepared using the same recipe except the TMOS was replaced with a mixture of TMOS and one of the following organosilane co-precursors: methytrimethoxysilane (MTMS), ethyltrimethoxysilane (ETMS), or propyltrimeth-oxysilane (PTMS). Results show that, by increasing the amount of catalyst and increasing gelation time, monolithic aerogels can be prepared out of volume mixtures including up to 75% MTMS, 50% ETMS or 50% PTMS in 7.5–15 h. As the amount of co-precursor is increased the aerogels become more hydrophobic (sessile tests with water droplets yield contact angles up to 155°) and less transparent (transmission through a 12.2-mm thick sample decreases from 83 to 50% at 800 nm). The skeletal and bulk density decrease and the surface area increases (550–760 m2/g) when TMOS is substituted with increasing amounts of MTMS. The amount of co-precursor does not affect the thermal conductivity. SEM imaging shows significant differences in the nanostructure for the most hydrophobic surfaces.  相似文献   

19.
This article presents, 122Sb (T 1/2 = 2.723 days, I β- = 97.59%) was produced via the natSn(p,xn) nuclear process at the AMIRS (Cyclone-30, IBA, Belgium). The electrodeposition experiments were carried out by potassium stannate trihydrate (K2Sn(OH)6) and potassium hydroxide. The optimum conditions of the electrodeposition of tin were as follows: 40 g/L natSn, 20 g/L KOH, 115 g/L K2Sn(OH)6, DC current density of 5 A/dm2 with a bath temperature of 75 °C. The electroplated Tin-target was irradiated with 26.5 MeV protons at current of 180 μA for 20 min. Solvent extraction of no-carrier-added 122Sb from irradiated Tin-natural target hydrochloric solution was investigated using di-n-butyl ether (C8H18O). Yields of about 3.61 MBq/μAh were experimentally obtained.  相似文献   

20.
Abstract  A novel polyoxotungstate H5[Cu(en)2H2O]{Cu(en)2[P2W19O69(H2O)]} · 2.5H2en · 8H2O (1) has been synthesized under hydrothermal conditions and characterized by IR spectroscopy, elemental analysis, and single crystal X-ray structural analysis. Crystal data for 1: Triclinic, P-1, a = 12.673(6) ?, b = 20.147(10) ?, c = 20.514(11) ?, α = 110.432(7)°, β = 90.171(5)°, γ = 97.502(6)°, V = 4859(4) ?3, Z = 2. Compound 1 exhibits a 1D linear structure, in which the [Cu(en)2]2+ ions act as the linkages of {P 2 W 19 } lacunary units. Graphical Abstract  A novel polyoxotungstate H5[Cu(en)2H2O]{Cu(en)2[P2W19O69(H2O)]} · 2.5H2en · 8H2O has been made under hydrothermal conditions. Compound 1 exhibits a 1D linear structure based on the {P 2 W 19 } lacunary units linked by the [Cu(en)2]2+ bridging groups.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号