首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Preparation and characterization of In–Se compound thin films prepared by sol–gel methods on glass substrate have been studied. X-ray diffraction analyses and optical transmission spectrum of In–Se compound thin film samples show that the fabricated sol–gel In–Se thin films features formed mainly as an In2Se3 crystal structure. From transmission spectra of In–Se thin films band gap energy were estimated approximately as ∼1.24 eV.  相似文献   

2.
In this study, synthesis and characterization of semiconductor tin oxide (SnO2) thin films on glass substrate were systematically investigated by using sol–gel technique for gas sensing applications. Turbidity, pH values, wettability and rheological properties of solution were measured by turbidimeter, pH meter, contact angle goniometer and rheometer machines before coating process. The thermal, structural, microstructural and optical properties of the coatings and powders made from the sols were extensively characterized by using DTA-TG, FT-IR, XRD, SEM-EDS, refractometer and spectrophotometer. Four different solutions, including 6, 8, 10 and 14 mL methanol content, were prepared by sol–gel technique to determine solvent influence on microstructure and semiconducting properties of the thin films. Refractive indiceses, band gaps, absorbance and transmittance values of SnO2 thin films, containing different methanol quantity, were determined and their variations depending on solvent content were obtained. It is concluded that solvent content influences microstructural and semiconducting properties of Sn based oxide thin films notably.  相似文献   

3.
Nanostructured ZnO thin films were deposited on glass by the dip-coating sol–gel method. The films exhibited pronounced activity to destroy malachite green in water both under UV-light illumination and in the dark.  相似文献   

4.
The nanostructure Ni-doped CdO films have been prepared by sol gel spin coating method. Atomic force microscopy results indicate that the CdO films are formed from the nanoparticles and the grain size is changed with nickel content. X-ray diffraction patterns of the films indicate that the undoped and Ni-doped CdO films have polycrystalline structure with a cubic sodium chloride structure, showing two main characteristic peaks assigned to the (111) and (200) planes. The optical band gap values of undoped and Ni-doped CdO films were determined by optical absorption method. The Eg values of the CdO films were found to be in the range of 2.26–2.60 eV. The Eg values of the CdO films increase with the content of Ni dopant (up to 6% Ni). It is evaluated that the optical band gap and grain size of the CdO film can be controlled by doping with nickel atoms.  相似文献   

5.
Ag doped ZrO2 thin films were deposited on quartz substrates by sol–gel dip coating technique. The effect of Ag doping on tetragonal to monoclinic phase transformation of ZrO2 at a lower temperature (500 °C) was investigated by X-ray diffraction. It is found that the Ag doping promotes the phase transformation. The phase transformation can be attributed to the increase in the tetragonal grain size and concentration of oxygen vacancies in the presence of the Ag dopant. Accumulation of the Ag atoms at the film surface and surface morphology changes in the films were observed by AFM as a function of varying Ag concentration. X-ray photoelectron spectroscopy gave Ag 3d and O 1s spectra on Ag doped thin film. The chemical states of Ag have been identified as the monovalent state of Ag+ ions in ZrO2. The Ag doped ZrO2 thin films demonstrated the tailoring of band gap values. It is also found that the intensity of room temperature photoluminescence spectra is suppressed with Ag doping.  相似文献   

6.
We present recent studies on amorphous and crystalline TiO2 resistive switching nonvolatile memory devices. A chemical sol–gel process is demonstrated for preparing amorphous and crystalline TiO2 thin films with different calcination temperature. Glass/SnO2:F/TiO2/Cu sandwich structures are fabricated and their current–voltage characteristics are examined. We found that the switching voltage goes from 4.8 to 3.5 V and the current compliance also drops from 10 to 1 mA when calcination temperatures increased. Smooth surface of TiO2 thin films are also observed by XRD, AFM and XPS.  相似文献   

7.
Ellipsometry and atomic force microscopy (AFM) were used to study the film thickness and the surface roughness of both ‘soft’ and solid thin films. ‘Soft’ polymer thin films of polystyrene and poly(styrene–ethylene/butylene–styrene) block copolymer were prepared by spin‐coating onto planar silicon wafers. Ellipsometric parameters were fitted by the Cauchy approach using a two‐layer model with planar boundaries between the layers. The smooth surfaces of the prepared polymer films were confirmed by AFM. There is good agreement between AFM and ellipsometry in the 80–130 nm thickness range. Semiconductor surfaces (Si) obtained by anisotropic chemical etching were investigated as an example of a randomly rough surface. To define roughness parameters by ellipsometry, the top rough layers were treated as thin films according to the Bruggeman effective medium approximation (BEMA). Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased etching time, although AFM results depend on the used window size. The combined use of both methods appears to offer the most comprehensive route to quantitative surface roughness characterisation of solid films. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
A new resin gel based on Spheron-Oxin(?) chelating ion-exchanger with anchored 8-hydroxyquinoline functional groups was tested for application in diffusive gradient in thin film technique (DGT) for determination of uranium. Selectivity of uranium uptake from model carbonate loaded solutions of natural water was studied under laboratory conditions and compared with selectivity of the conventional Chelex 100 based resin gel. The affinity of Spheron-Oxin(?) functional groups enables determination of the overall uranium concentration in water containing carbonates up to the concentration level of 10(2) mg L(-1). The effect of uranium binding to the polyacrylamide (APA) and agarose diffusive gels (AGE) was also studied. Uranium is probably bound in both gels by a weak interaction with traces of acrylic acid groups in the structure of APA gel and with pyruvic and sulfonic acid groups in the AGE gel. These sorption effects can be eliminated to the negligible level by prolonged deployment of DGT probes or by disassembling probes after the 1-2 days post-sampling period that is sufficient for release of uranium from diffusive gel and its sorption in resin gel.  相似文献   

9.
Possibility of the post-synthesis functionalisation of the template-free and template-structured silica films of ca. 200 nm thickness on glass slides was evaluated. The films were prepared by dip-coating from TEOS sol–gel precursor in the absence or presence of CTAB template. It has been found out that the template-structured silica films can be functionalised with Ag nanoparticles via [Ag(NH3)2]NO3 ion-exchange or with adsorbed Methylene Blue (MB) cationic dye due to the presence of the well-organised mesopores after template removal. In contrast, only the external geometric surface of the template-free silica films appeared to be accessible for modifier molecules. Possibility of functionalisation of the multi-layered template-structured silica film depends on the sequence of dip-coating and calcination steps upon their preparation. When preparation includes reiteration of dip-coating and calcination steps, only the latest top silica film appears to be accessible to modifier molecules. When preparation includes successive dip-coating cycles accomplished by calcination of the final multi-layered film, all pores appear to be accessible since their formation occurs via simultaneous removal of the template molecules over the whole thickness of the multi-layered template-structured silica film.  相似文献   

10.
A simple technique for patterning organic materials using a surfactant assisted lift-off method is proposed. Thin films of various organic materials are prepared, and areas in contact with a surfactant coated poly(dimethylsiloxane) (PDMS) stamp are selectively removed. The general applicability of this technique is shown for materials containing nitrate, amine, and carboxylic acid functional groups. This technique provides a new methodology for fabricating patterns with vertical dimensions ranging from 30 nm up to 3 μm on organic thin films with specific functional groups.  相似文献   

11.
Nano crystalline cesium (Cs) doped ZnO thin films were deposited on glass substrate by sol gel spin coating method with 1–3 mol.% doping concentration and different annealing temperatures. The deposited films were characterized by X-ray diffraction (XRD), Hall Effect, Photoluminescence (PL) and UV–Visible studies. XRD measurements reveal that all the samples abound in the wurtzite structure with polycrystalline nature. An increase in crystalline size from 19.60 to 44.54 nm is observed with the increase of doping concentration. Electrical conductivity of Cs doped ZnO films were observed from Hall effect measurements and the maximum carrier concentration obtained is 7.35 × 1018 cm?3. The near band emission (384 nm) peak intensity increases with the increase of Cs doping concentration and a maximum intensity 55,280 was observed for CZ3 film from PL spectrum. Also a low energy near infrared (NIR) emission peak centered at 1.62 eV appears for the Cs doped ZnO films. The average transmission of CZ film is 88 % and the absorption edge is red shifted with the increase of Cs doping concentration and also the optical conductivity increases in the UV region.  相似文献   

12.
Novel cobalt catalysts were prepared by sol–gel method, and enhanced by plasma treatment, for methane catalytic combustion. These samples were characterized using X-ray diffraction, X-ray photoelactron spectroscopy, UV-vis spectroscopy, Fourier transform infrared spectroscopy, thermal gravimetrical analysis, N2 Adsorption–desorption, temperature-programmed reduction and hydrogen–oxygen titration technologies. The XPS characterizations suggested that plasma treatment was favorable for the enrichment of surface cobalt, with a value of surface cobalt from 2.2% to 8.5% in mole. The specific surface area of the glow plasma assised sample (Co-Plas-Solgel-2) increased to 320 m2/g comparing with 305 m2/g of the conventional sample (Co-Solgel-1). The ignition temperature (T10%) of Co-Plas-Solgel-2 catalyst was about 50 °C lower than that of Co-Solgel-1, and its CH4 conversion was two times higher than that of Co-Solgel-1 during the whole range of catalytic combustion activity test (340–520 °C). With a better dispersion and more active sites, the plasma assisted sample exhibited significant enhancement in catalytic performances.  相似文献   

13.
The sol–gel synthesis of hybrid materials offers special opportunities to combine polymer and glass properties and to create promising candidates for photonic applications.We report on the optical and morphological characterization of a new photosensitive epoxy based sol–gel system. Germanium ethoxide and 3-Glycidoxypropyltrimethoxysilane were used as precursors for hybrid sol-gel planar coatings. A photoacid generator was added to solution in order to allow the epoxy photopolymerization when the films are selectively exposed to UV light. The refractive index increase (Δn = 0.015) induced by UV light allows the direct patterning of waveguiding structures having good morphological quality. Stripes and beam splitters were defined by direct UV exposition on silicon substrates. Moreover, we present structures made by thermal imprinting method. Silicon masters have been used to transfer relief gratings on the photopolymerizable epoxy sol-gel materials. Combining thermal imprinting technique and UV light exposition through a photomask, complex structures can be realized such as light couplers, sensors and wavelength filters.  相似文献   

14.
15.
A three phase junction: electrode|organic phase|aqueous phase is employed as microreactor for electrochemically assisted sol–gel silicate stripe deposition. A tin-doped indium oxide (ITO) electrode is immersed into the cell filled with two immiscible liquids. The aqueous phase on the top contains dissolved sodium sulphite salt whereas the organic phase on the bottom consists of sol–gel precursor solution–n-octyltriethoxysilane in a nitrobenzene. During electrochemical oxidation of the sulphite protons are generated in the aqueous phase. They act as catalyst for the sol–gel process of the precursor dissolved in the organic phase and a macroporous silicate stripe is formed at the electrode surface close to the three phase junction. Its size is controlled by the experimental conditions i.e. time of electrolysis. The smallest width of the obtained continuous structure is c.a. 10 μm.  相似文献   

16.
This work points out that electrogeneration of silica gel (SG) films on glassy carbon electrodes (GCEs) can be applied to immobilize biomolecules – hemoglobin (Hb) or glucose oxidase (GOD) or both of them in mixture – without preventing their activity. These proteins were physically entrapped in the sol–gel material in the course of the electro-assisted deposition process applied to form the thin films onto the electrode surface. SG films were prepared from a precursor solution by applying a suitable cathodic potential likely to induce a local pH increase at the electrode/solution interface, accelerating thereby polycondensation of the silica precursors with concomitant film formation. Successful immobilization of proteins was checked by various physico-chemical techniques. Both Hb and GOD were found to undergo direct electron transfer, as demonstrated by cyclic voltammetry. GCE–SG–Hb gave rise to well-defined peaks at potentials Ec = −0.29 V and Ea = −0.17 V in acetate buffer, corresponding to the FeIII/FeII redox system of heme group of the protein, while GCE–SG–GOD was characterized by the typical signals of FAD group at Ec = −0.41 V and Ea = −0.33 V in phosphate buffer. These two redox processes were also evidenced on a single voltammogram when both Hb and GOD were present together in the same SG film. Hb entrapped in the silica thin film displayed an electrocatalytic behavior towards O2 and H2O2 in solution, respectively in the mM and μM concentration ranges. Immobilized GOD kept its biocatalytic properties towards glucose. Combined use of these two proteins in mixture has proven to be promising for detection of glucose in solution via the electrochemical monitoring of oxygen consumption (decrease of the oxygen electrocatalytic signal).  相似文献   

17.
We investigate the spontaneous rolling of polydimethylsiloxane (PDMS) thin films and demonstrate the fabrication of capillaries with topographical and chemical patterns on the inner wall. Thin films of PDMS are either coated by a layer of hard material or have their surface hardened by plasma oxidation. They are then driven out of equilibrium by selective solvent swelling in vapor phase resulting in a tubular rolled‐up system. The inner diameter of those is measured as a function of layer thickness for different solvents and capping types. Those results are shown to be in good agreement with Timoshenko theory. Before rolling, the future inner surface can be characterized and functionalized. We demonstrate topographical and chemical patterning, respectively by embossing and microcontact printing. These methods are very simple and can easily produce cylindrical capillaries with inner diameter between 20 and some hundreds of microns with fully functionalized inner surface, overcoming many difficulties encountered in conventional soft lithography techniques. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 721–728  相似文献   

18.
Ce-substituted BiFeO3 film (BCFO film) have been prepared by sol–gel process on F doped SnO2 (FTO)/glass substrates. The effects of Ce substitution on the structural and electrical properties have been reported. X-ray diffraction data confirmed the R3c structure with the elimination of all secondary phases. We observed an increase in the remnant polarization (Pr) with Ce substitution and obtained a maximum value of ∼84 μC/cm2 in 5% Ce-substituted film. The dielectric constant of the films was increased from 280 to about 420 for the BiFeO3 film and 5% Ce-substituted BCFO film, respectively and the films showed excellent dielectric loss behavior. Moreover, the leakage current was substantially reduced by the Ce substitution.  相似文献   

19.
Gd-doped CdO thin films with various Gd concentrations have been prepared on glass and Si wafer substrates using sol gel technique. The films were characterised by X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, and dc-electrical measurements. XRF method was used to determine the %Gd content in the films while XRD was used to study the influence of Gd doping on the detailed crystalline structure. Experimental data indicate that Gd3+ doping with level of less than 2.4% slightly enlarge the CdO crystalline unit cell. The bandgap (E g) of Gd-doped CdO suffers narrowing by about 13% due to a small (0.2%) doping level but with %Gd doping level larger than 2.4%, E g becomes wider than that of undoped CdO. The electrical behaviours of the Gd-doped CdO films show that they are degenerate semiconductors. The 2% Gd-doped CdO film shows increase in its mobility by about 92%, conductivity by 320%, and carrier concentration by 127%, relative to undoped CdO film. From transparent-conducting-oxide point of view, the Gd doping of CdO by sol gel method is not effective. Finally, the absorption in the NIR spectral region was investigated to be due to the free electrons.  相似文献   

20.
Composites based on polydimethylsiloxane incorporating silica and titania were prepared by mixing polydimethylsiloxane with proper oxides precursors, tetraethyl-orthosilicate and tetrabutyl-orthotitanate. In the presence of environmental humidity and in acid catalysis, hydrolysis/condensation processes take place with formation of oxides and concomitantly polymer crosslinking. Partial replacement of SiO2 in a polydimethylsiloxane/silica composite with titania (both generated in situ by sol–gel process) affects surface hydrophilicity (evaluated by dynamic contact angle), water vapor sorption ability (determined by dynamic vapor sorption) and thermal stability. The dielectric properties are also controlled by composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号