首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BRCTs are phosphoserine‐binding domains found in proteins involved in DNA repair, DNA damage response and cell cycle regulation. BRCA1 is a BRCT domain‐containing, tumor‐suppressing protein expressed in the cells of breast and other human tissues. Mutations in BRCA1 have been found in ca. 50 % of hereditary breast cancers. Cell‐permeable, small‐molecule BRCA1 inhibitors are promising anticancer agents, but are not available currently. Herein, with the assist of microarray‐based platforms, we have discovered the first cell‐permeable protein–protein interaction (PPI) inhibitors against BRCA1. By targeting the (BRCT)2 domain, we showed compound 15 a and its prodrug 15 b inhibited BRCA1 activities in tumor cells, sensitized these cells to ionizing radiation‐induced apoptosis, and showed synergistic inhibitory effect when used in combination with Olaparib (a small‐molecule inhibitor of poly‐ADP‐ribose polymerase) and Etoposide (a small‐molecule inhibitor of topoisomerase II). Unlike previously reported peptide‐based PPI inhibitors of BRCA1, our compounds are small‐molecule‐like and could be directly administered to tumor cells, thus making them useful for future studies of BRCA1/PARP‐related pathways in DNA damage and repair response, and in cancer therapy.  相似文献   

2.
Study on the degeneracy of antisense peptides using affinity chromatography   总被引:3,自引:0,他引:3  
Zhao R  Yu X  Liu H  Zhai L  Xiong S  Su T  Liu G 《Journal of chromatography. A》2001,913(1-2):421-428
The degeneracy of antisense peptides was studied by high-performance affinity chromatography. A model sense peptide (AAAA) and its antisense peptides (CGGG, GGGG, RGGG, SGGG) were designed and synthesized according to the degeneracy of genetic codes. An affinity column with AAAA as the ligand was prepared. The affinity chromatographic behaviors of antisense peptides on the column were evaluated. The results indicated that model antisense peptides have clear retention on the immobilized AAAA affinity column. RGGG showed the strongest affinity interaction. Similar result was obtained from another experiment that Arg-substituted antisense peptide of fusion peptide (1-11) of influenza virus A was also shown the highest affinity binding to immobilized fusion peptide.  相似文献   

3.
The branched pentasaccharide chain of ganglioside GM1 is a prominent cell surface ligand, for example, for cholera toxin or tumor growth-regulatory homodimeric galectins. This activity profile via protein recognition prompted us to examine the binding properties of peptides with this specificity. Our study provides insights into the mechanism of molecular interaction of this thus far unexplored size limit of the protein part. We used three pentadecapeptides in a combined approach of mass spectrometry, NMR spectroscopy and molecular modelling to analyze the ligand binding in solution. Availability of charged and hydrophobic functionalities affected the intramolecular flexibility of the peptides differently. Backfolding led to restrictions in two cases; the flexibility was not reduced significantly by association of the ligand in its energetically privileged conformations. Major contributions to the interaction energy arise from the sialic acid moiety contacting Arg/Lys residues and the N-terminal charge. Considerable involvement of stacking between the monovalent ligand and aromatic rings could not be detected. This carbohydrate binding strategy is similar to how an adenoviral fiber knob targets sialylated glycans. Rational manipulation for an affinity enhancement can now be directed to reduce the flexibility, exploit the potential for stacking and acquire the cross-linking capacity of the natural lectins by peptide attachment to a suitable scaffold.  相似文献   

4.
An increasing number of peptides with specific binding affinity to inorganic materials are being isolated using combinatorial peptide libraries without prior knowledge about the interaction between peptides and target materials. The lack of understanding of the mechanism and the contribution of constituent amino acids to the peptides' inorganic-binding ability poses an obstacle to optimizing and tuning of the binding affinity of peptides to inorganic materials and thus hinders the practical application of these peptides. Using the phage surface display technique, we previously identified a disulfide-bond-constrained peptide (-CHKKPSKSC-, STB1) cognitive of TiO2. In the present study, the interaction of STB1 with TiO2 was probed using a series of point mutants of STB1 displayed on phage surfaces. Their binding affinity was measured using a quartz crystal microbalance with energy dissipation measurement and compared on the basis of the delta f or delta D values. The three K residues of STB1 were found to be essential and sufficient for phage particle binding to TiO2. One mutant with five K residues showed not stronger but weaker binding affinity than STB1 due to its conformational restriction, as illustrated by molecular dynamics simulation, to align five K residues in a way conducive to their simultaneous interaction with the TiO2 surface. The contextual influence of noncharged residues on STB1's binding affinity was also investigated. Our results may provide insight into the electrostatic interaction between peptides and inorganic surfaces.  相似文献   

5.
BackgroundSUANPANQI, the pseudo phosphorous stem of Cremastra appendiculata, is one of the most well-known traditional Chinese medicine, which has been shown to inhibit tumorigenesis in various human cancers. However, the underlying mechanism of SUANPANQI treatment against breast cancer (BRCA) remains unclear. In this study. we aim to investigate the bioactive compounds and mechanisms of SUANPANQI in the treatment of BRCA based on network pharmacology and molecular docking.MethodsThe compounds were collected from previous research. SwissADME was used to screen bioactive compounds. The targets corresponding to SUANPANQI and BRCA were obtained using MalaCards and SwissTargetPrediction. SUANPANQI-related and BRCA-related targets were found and then overlapped to get intersections, which represented potential anti-BRCA targets of SUANPANQI. The Cytoscape software was used to construct bioactive compounds targeting the BRCA network. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the targets was extracted from the metascape database, then conducted using the Cluster Profiler package in R software. Protein-Protein interaction (PPI) network was constructed using the STRING online database and analyzed using Cytoscape software. Pivotal genes were screened using the topological analysis, survival analysis, and pathological stage analysis. Molecular docking analysis was used to verify whether the bioactive compounds had a definite affinity with the pivotal targets.ResultsSixty-five bioactive compounds of SUANPANQI were involved with 225 predicted BRCA targets. Then, a compound-target network and a PPI network were constructed. The GO analysis and KEGG enrichment analysis suggested that SUANPANQI worked against BRCA via PI3K-Akt, Ras, FoxO, Rap1, and ErbB signaling pathways, etc. After topological analysis, survival analysis, and pathological stage analysis of the SUANPANQI potential targets against BRCA, 6 pivotal target genes (AR, HSP90AA1, MMP9, PGR, PTGS2, TNF) that were highly responsible for the therapeutic effects of SUANPANQI against BRCA were obtained. Molecular docking results showed that 6 bioactive compounds of SUANPANQI had strong binding efficiency with the 6 pivotal genes.ConclusionsThe present study clarifies the mechanism of SUANPANQI against BRCA through multiple targets and pathways, and provides evidence to support its clinical use.  相似文献   

6.
The identification of pairs of small peptides that recognize each other in water exclusively through electrostatic interactions is reported. The target peptide and a structure‐biased combinatorial ligand library consisting of ≈78 125 compounds were synthesized on different sized beads. Peptide–peptide interactions could conveniently be observed by clustering of the small, fluorescently labeled target beads on the surface of larger ligand‐containing beads. Sequences of isolated hits were determined by MS/MS. The interactions of the complex showing the highest affinity were investigated by a novel single‐bead binding assay and by 2D NMR spectroscopy. Molecular dynamics (MD) studies revealed a putative mode of interaction for this unusual electrostatic binding event. High binding specificity occurred through a combination of topological matching and electrostatic and hydrogen‐bond complementarities. From MD simulations binding also seemed to involve three tightly bound water molecules in the interface between the binding partners. Binding constants in the submicromolar range, useful for biomolecular adhesion and in nanostructure design, were measured.  相似文献   

7.
Qiao Y  Li P  Chen Y  Feng J  Wang J  Wang W  Ma Y  Sun P  Yuan Z 《Journal of chromatography. A》2010,1217(48):7539-7546
A major challenge in the development of affinity adsorbents is the design of specific adsorbents for target molecules. In this paper, a two-step strategy was used to design a specific adsorbent for oligopeptides. Based on the structural characteristics of target peptide DFLAE (DE5), the affinity ligand CDenHis bearing hydrophobic inclusion and electrostatic interaction sites was prepared by grafting histidine onto β-cyclodextrin (CD) using ethylenediamine; ligands with single hydrophobic inclusion or electrostatic interaction sites (CDen and HisOMe) were used as reference ligands. Results indicated that the binding affinity (K(a)) of CDenHis with DE5 was 6.23×10(4)M(-1), 23- and 61-fold higher than that of CDen and HisOMe, respectively. Computer simulations were used to further optimize the steric configuration of CDenHis. It was found that the optimized ligand CDdnHis exhibited a much improved binding affinity for DE5 (K(a)=1.02×10(5)M(-1)). Moreover, the corresponding adsorbent A-CDdnHis not only showed much better adsorption ability compared with A-CDenHis, but also excellent adsorption specificity for DE5-containing peptides. Kinetic analysis and adsorption mechanism studies suggested that the configuration matching of CDdnHis with DE5 and the cooperation of multiple interactions led to the fast and selective adsorption of DE5-containing peptides to A-CDdnHis.  相似文献   

8.
Recent studies suggest that the H1 subunit of the carbohydrate recognition domain (H1CRD) of the asialoglycoprotein receptor is used as an entry site into hepatocytes by hepatitis A and B viruses and Marburg virus. Thus, molecules binding specifically to the CRD might exert inhibition towards these diseases by blocking the virus entry site. We report here the identification of the epitope structure of H1CRD to a monoclonal antibody by proteolytic epitope excision of the immune complex and high-resolution MALDI-FTICR mass spectrometry. As a prerequisite of the epitope determination, the primary structure of the H1CRD antigen was characterised by ESI-FTICR-MS of the intact protein and by LC-MS/MS of tryptic digest mixtures. Molecular mass determination and proteolytic fragments provided the identification of two intramolecular disulfide bridges (seven Cys residues), and a Cys-mercaptoethanol adduct formed by treatment with β-mercaptoethanol during protein extraction. The H1CRD antigen binds to the monoclonal antibody in both native and Cys-alkylated form. For identification of the epitope, the antibody was immobilized on N-hydroxysuccinimide (NHS)-activated Sepharose. Epitope excision and epitope extraction with trypsin and FTICR-MS of affinity-bound peptides provided the identification of two specific epitope peptides (5–16) and (17–23) that showed high affinity to the antibody. Affinity studies of the synthetic epitope peptides revealed independent binding of each peptide to the antibody.  相似文献   

9.
An unnatural amino acid, β-[6′-(N, N-dimethyl)amino-2′-naphthoyl]alanine (Ald) showing polarity-sen sitive fluorescence characteristics, was synthesized. A thorough Ald-scan of dynorphin A (Dyn A), the putative endogenous ligand for κ opioid receptors, was then performed. Replacement of the amino acid residues in positions 5, 8, 10, 12 or 14 of Dyn A(1-13)-NH2 with Ald resulted in compounds that had almost equal κ binding affinity compared with that of the parent compound; on the other hand, substi-tution o...  相似文献   

10.
The branched pentasaccharide chain of ganglioside GM1 is a prominent cell surface ligand, for example, for cholera toxin or tumor growth‐regulatory homodimeric galectins. This activity profile via protein recognition prompted us to examine the binding properties of peptides with this specificity. Our study provides insights into the mechanism of molecular interaction of this thus far unexplored size limit of the protein part. We used three pentadecapeptides in a combined approach of mass spectrometry, NMR spectroscopy and molecular modelling to analyze the ligand binding in solution. Availability of charged and hydrophobic functionalities affected the intramolecular flexibility of the peptides differently. Backfolding led to restrictions in two cases; the flexibility was not reduced significantly by association of the ligand in its energetically privileged conformations. Major contributions to the interaction energy arise from the sialic acid moiety contacting Arg/Lys residues and the N‐terminal charge. Considerable involvement of stacking between the monovalent ligand and aromatic rings could not be detected. This carbohydrate binding strategy is similar to how an adenoviral fiber knob targets sialylated glycans. Rational manipulation for an affinity enhancement can now be directed to reduce the flexibility, exploit the potential for stacking and acquire the cross‐linking capacity of the natural lectins by peptide attachment to a suitable scaffold.  相似文献   

11.
The Drug Design Data Resource (D3R) Grand Challenges present an opportunity to assess, in the context of a blind predictive challenge, the accuracy and the limits of tools and methodologies designed to help guide pharmaceutical drug discovery projects. Here, we report the results of our participation in the D3R Grand Challenge 4 (GC4), which focused on predicting the binding poses and affinity ranking for compounds targeting the $$\beta$$-amyloid precursor protein (BACE-1). Our ligand similarity-based protocol using HYBRID (OpenEye Scientific Software) successfully identified poses close to the native binding mode for most of the ligands with less than 2 Å RMSD accuracy. Furthermore, we compared the performance of our HYBRID-based approach to that of AutoDock Vina and DOCK 6 and found that using a reference ligand to guide the docking process is a better strategy for pose prediction and helped HYBRID to perform better here. We also conducted end-point free energy estimates on molecules dynamics based ensembles of protein-ligand complexes using molecular mechanics combined with generalized Born surface area method (MM-GBSA). We found that the binding affinity ranking based on MM-GBSA scores have poor correlation with the experimental values. Finally, the main lessons from our participation in D3R GC4 are: (i) the generation of the macrocyclic conformers is a key step for successful pose prediction, (ii) the protonation states of the BACE-1 binding site should be treated carefully, (iii) the MM-GBSA method could not discriminate well between different predicted binding poses, and (iv) the MM-GBSA method does not perform well at predicting protein–ligand binding affinities here.  相似文献   

12.
The amino acid sequence MxCxxC is conserved in many soft-metal transporters that are involved in the control of the intracellular concentration of ions such as Cu(I), Hg(II), Zn(II), Cd(II), and Pb(II). A relevant task is thus the selectivity of the motif MxCxxC for these different metal ions. To analyze the coordination properties and the selectivity of this consensus sequence, we have designed two model peptides that mimic the binding loop of the copper chaperone Atx1: the cyclic peptide P(C) c(GMTCSGCSRP) and its linear analogue P(L) (Ac-MTCSGCSRPG-NH2). By using complementary analytical and spectroscopic methods, we have demonstrated that 1:1 complexes are obtained with Cu(I) and Hg(II), whereas 1:1 and 1:2 (M:P) species are successively formed with Zn(II), Cd(II), and Pb(II). The complexation properties of the cyclic and linear peptides are very close, but the cyclic compound provides systematically higher affinity constants than its unstructured analogue. The introduction of a xPGx motif that forms a type II beta turn in P(C) induces a preorganization of the binding loop of the peptide that enhances the stabilities of the complexes (up to 2 orders of magnitude difference for the Hg complexes). The affinity constants were measured in the absence of any reducing agent that would compete with the peptides and range in the order Hg(II) > Cu(I) > Cd(II) > Pb(II) > Zn(II). This sequence is thus highly selective for Cu(I) compared to the essential ion Zn(II) that could compete in vivo or compared to the toxic ions Cd(II) and Pb(II). Only Hg(II) may be an efficient competitor of Cu(I) for binding to the MxCxxC motif in metalloproteins.  相似文献   

13.
The highly abundant GTP binding protein elongation factor Tu (EF-Tu) fulfills multiple roles in bacterial protein biosynthesis. Phage-displayed peptides with high affinity for EF-Tu were selected from a library of approximately 4.7 x 10(11) different peptides. The lack of sequence homology among the identified EF-Tu ligands demonstrates promiscuous peptide binding by EF-Tu. Homolog shotgun scanning of an EF-Tu ligand was used to dissect peptide molecular recognition by EF-Tu. All homolog shotgun scanning selectants bound to EF-Tu with higher affinity than the starting ligand. Thus, homolog shotgun scanning can simultaneously optimize binding affinity and rapidly provide detailed structure activity relationships for multiple side chains of a polypeptide ligand. The reported peptide ligands do not compete for binding to EF-Tu with various antibiotic EF-Tu inhibitors, and could identify an EF-Tu peptide binding site distinct from the antibiotic inhibitory sites.  相似文献   

14.
A series of 3-[3-(4-aryl-1-piperazinyl)-propyl]-1H-indole derivatives (12a-h) was synthesized and evaluated for binding affinity at the human 5-hydroxytryptamine(1A) receptor (5-HT(1A)R) compounds (12b) and (12h) showed the highest 5-HT(1A) receptor affinity (IC(50)=15 nM). Molecular docking studies with all the compounds in a homology model of 5-HT(1A) showed that the main interaction anchoring the ligand in the receptor was a charge-reinforced bond between the protonated nitrogen atom (N-4) of the piperazine ring and Aspartate(3.32).  相似文献   

15.
Key pharmacophoric elements for the (aminoalkyl)indole (AAI) CB1 cannabinoid receptor agonists are the aminoalkyl moiety, the lipophilic aroyl group, and the heterocyclic indole ring. In the present study, the docking space allowed for (R)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl](1-naphthalenyl)methanone (WIN55212-2; 1) within the CB1 receptor was extensively explored by a docking approach that combines Monte Carlo (MC) and molecular dynamics (MD) simulations. The goals were to understand the key binding interactions of AAIs within the CB1 receptor and to examine the role of the ligand in inducing a receptor conformational change. From the findings of extensive SAR studies on the cannabinoid compounds and correlation between AAI binding affinity data and calculated binding energies, we proposed two alternative binding conformations, aroyl-up1 and aroyl-up2. These denote the directionality of the ligand naphthyl ring within the receptor upward with respect to the extracellular side. A comprehensive structural analysis of 1 demonstrated that the aroyl ring moiety could be important as the steric trigger for inducing CB1 receptor conformational change. Thus, it appears that aromatic-aromatic interactions are important not only for the binding of 1 but also for inducing receptor conformational change. It is possible that differences in the nature of the ligand binding could contribute to ligand-specific conformational changes in the receptor.  相似文献   

16.
Studying enzymes that are involved in the regulation of dynamic post-translational modifications (PTMs) is of key importance in proteomics research. Such investigations can be particularly challenging when the modification itself is intrinsically labile. In this article, we elucidate the enzymatic activity of Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase (LHPP) towards different O- and N-phosphorylated peptides by a combined experimental and computational approach. LHPP has been previously described to hydrolyze the phosphoramidate bonds in different small molecule substrates, including phosphorylated lysine (pLys). Taking the instability of the phosphoramidate bond into account, we conducted a carefully adjusted enzymatic assay with various pLys pentapeptides to confirm enzymatic phosphatase activity with LHPP. Molecular docking was employed to explore possible binding poses of the substrates in complex with the enzyme. Molecular dynamics based free energy calculations, which are unique in their accuracy and solid theoretical basis, were further applied to predict relative binding affinity of different substrates. Comparison of simulations with experiments clearly suggested a distinct binding motif of pLys peptides as well as a very narrow promiscuity of LHPP. We believe this integrated approach can be widely adopted to study the structure and interaction of poorly characterized enzyme–substrate complexes, in particular with synthetically challenging or labile substrates.

Combining phosphatase activity assays with molecular docking and free energy calculations reveals low promiscuity and substrate binding of intrinsically labile phospho-lysine peptides to the enzyme LHPP.  相似文献   

17.
The lock-and-key (LAK) motif, a common structural moiety found in subunit interfaces of glutathione S-transferases (GSTs), plays an important role in biomolecular recognition and quaternary structure integrity. Inspection of the key structural features of the LAK motif prompted the de novo design and combinatorial synthesis of a 13-membered solid-phase ligand library, employing as a lead ligand the Phe-Trz-X structure, mimicking the LAK motif. 1,3,5-Triazine (Trz) was used as the scaffold for assembly, substituted with different LAK-mimetic amino acids. De novo ligand design was effected using bioinformatics and molecular modeling and based on mimicking the interactions of the LAK motif. The library of affinity adsorbents was assessed for binding corn and human serum proteomes and purified proteins of different structure and ligand binding specificity. The results showed remarkable differences in the binding specificity of LAK-mimetic adsorbents for a wide range of proteins, as a consequence of minor changes in ligand structure. One LAK-mimetic adsorbent was integrated in a single-step purification protocol for human monoclonal anti-human immunodeficiency virus 2F5 antibody (mAb 2F5) from spiked corn extract, affording high recovery and purity. The results demonstrate that the principle of natural recognition found in the lock-and-key motif, in combination with de novo combinatorial design, may lead to synthetic affinity ligands, useful in downstream processing and proteomic research.  相似文献   

18.
Specific and dynamic biological interactions pave the blueprint of signal networks in cell. For example, a great variety of specific protein-ligand interactions define how intracellular signals flow. Taking advantage of the specificity of these interactions, we postulate an “affinity-guided covalent conjugation” strategy to lock binding ligands through covalent reactions between the ligand and the receptor protein. The presence of a nucleophile close to the ligand binding site of a protein is sine qua none of this reaction. Specific noncovalent interaction of a ligand derivative (which contains an electrophile at a designed position) to the ligand binding site of the protein brings the electrophile to the close proximity of the nucleophile. Subsequently, a conjugation reaction spontaneously takes place between the nucleophile and the electrophile, and leads to an intermolecular covalent linkage. This strategy was first showcased in coiled coil peptides which include a cysteine mutation at a selected position. The short peptide sequence was used for covalent labeling of cell surface receptors. The same strategy was then used to guide the design of a set of protein Lego bricks for covalent assembly of protein complexes of unnatural geometry. We finally made “reactive peptides” for natural adaptor proteins that play significant roles in signal transduction. The peptides were designed to react with a single domain of the multidomain adaptor protein, delivered into the cytosol of neurons, and re-directed the intracellular signal of neuronal migration. The trilogy of protein labeling, assembly, and inhibition of intracellular signals, all through a specific covalent bond, fully demonstrated the generality and versatility of “affinity-guided covalent conjugation” in various applications.  相似文献   

19.
To understand the effect of the replacement of Tyr residue at position 1 in opioid peptides by 2,6-dimethyl-Tyr (Dmt) on the biological property, chiral (D or L) Dmt1 analogs of Leu-enkephalin (Enk) and Tyr-D-Arg-Phe-beta Ala-NH2 (YRFB) were synthesized and their enzymatic stabilities, in vitro bioactivities and receptor binding affinities compared with those of parent peptides. [L-Dmt1]Enk (1) exhibited 4-fold higher stability against aminopeptidase-M and possessed dramatically increased activities in guinea pig ilium (GPI) (187-fold) and mouse vas deferens (MVD) (131-fold) assays, and in rat brain receptor binding assays (356-fold at mu receptor and 46-fold at delta receptor) as compared to Enk. [L-Dmt1]YRFB (3) also exhibited increased activities in GPI (46-fold) and MVD (177-fold) assays, and in the binding assays (69-fold at mu receptro and 341-fold at delta receptor) as compared to the parent peptide. [D-Dmt1]Enk (2) and [D-Dmt1]YRFB (4) exhibited activities with diminished or lesser potency than the parent peptide in all assays. These results indicate that there is a tendency for mu affinity to be enhanced more than delta affinity with introduction of L-Dmt into delta ligand peptide (Enk), and for delta affinity to be enhanced more than mu affinity in case of mu ligand peptide (YRFB), resulting in reduced receptor selectivities at the receptors.  相似文献   

20.
The interaction of the alpha5beta1 integrin with its ligand, fibronectin, supports numerous adhesive functions and has an important role in health and disease. In recent years, there has been a considerable effort in designing fibronectin-mimetic peptides to target the integrin. However, to date, the therapeutic use of these peptides has been limited, as they cannot accurately mimic fibronectin's binding affinity for alpha5beta1. A peptide-amphiphile (PR_b) was synthesized with a peptide headgroup composed of four building blocks: a spacer; RGDSP, the primary recognition site for alpha5beta1; PHSRN, the synergy binding site; and a linker. The linker was designed to mimic two important criteria: the distance and the hydrophobicity/hydrophilicity between PHSRN and RGD in fibronectin. Human umbilical vein endothelial cells were seeded on different substrates and evaluated in terms of adhesion, spreading, specificity, cytoskeleton organization, focal adhesions, and secretion of extracellular fibronectin. This peptide was shown to perform comparably to fibronectin, indicating that a biomimetic approach can result in the design of novel peptides with therapeutic potential for biomaterial functionalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号