首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let \(X_n = \{x^j\}_{j=1}^n\) be a set of n points in the d-cube \({\mathbb {I}}^d:=[0,1]^d\), and \(\Phi _n = \{\varphi _j\}_{j =1}^n\) a family of n functions on \({\mathbb {I}}^d\). We consider the approximate recovery of functions f on \({{\mathbb {I}}}^d\) from the sampled values \(f(x^1), \ldots , f(x^n)\), by the linear sampling algorithm \( L_n(X_n,\Phi _n,f) := \sum _{j=1}^n f(x^j)\varphi _j. \) The error of sampling recovery is measured in the norm of the space \(L_q({\mathbb {I}}^d)\)-norm or the energy quasi-norm of the isotropic Sobolev space \(W^\gamma _q({\mathbb {I}}^d)\) for \(1 < q < \infty \) and \(\gamma > 0\). Functions f to be recovered are from the unit ball in Besov-type spaces of an anisotropic smoothness, in particular, spaces \(B^{\alpha ,\beta }_{p,\theta }\) of a “hybrid” of mixed smoothness \(\alpha > 0\) and isotropic smoothness \(\beta \in {\mathbb {R}}\), and spaces \(B^a_{p,\theta }\) of a nonuniform mixed smoothness \(a \in {\mathbb {R}}^d_+\). We constructed asymptotically optimal linear sampling algorithms \(L_n(X_n^*,\Phi _n^*,\cdot )\) on special sparse grids \(X_n^*\) and a family \(\Phi _n^*\) of linear combinations of integer or half integer translated dilations of tensor products of B-splines. We computed the asymptotic order of the error of the optimal recovery. This construction is based on B-spline quasi-interpolation representations of functions in \(B^{\alpha ,\beta }_{p,\theta }\) and \(B^a_{p,\theta }\). As consequences, we obtained the asymptotic order of optimal cubature formulas for numerical integration of functions from the unit ball of these Besov-type spaces.  相似文献   

2.
We develop conditions on a Sobolev function \(\psi \in W^{m,p}({\mathbb{R}}^d)\) such that if \(\widehat{\psi}(0) = 1\) and ψ satisfies the Strang–Fix conditions to order m ? 1, then a scale averaged approximation formula holds for all \(f \in W^{m,p}({\mathbb{R}}^d)\) :
$ f(x) = \lim_{J \to \infty} \frac{1}{J} \sum_{j=1}^{J} \sum_{k \in {{\mathbb{Z}}}^d} c_{j,k}\psi(a_j x - k) \quad {\rm in} W^{m, p}({{\mathbb{R}}}^d).$
The dilations { a j } are lacunary, for example a j =  2 j , and the coefficients c j,k are explicit local averages of f, or even pointwise sampled values, when f has some smoothness. For convergence just in \({W^{m - 1,p}({\mathbb{R}}^d)}\) the scale averaging is unnecessary and one has the simpler formula \(f(x) = \lim_{j \to \infty} \sum_{k \in {\mathbb{Z}}^d} c_{j,k}\psi(a_j x - k)\) . The Strang–Fix rates of approximation are recovered. As a corollary of the scale averaged formula, we deduce new density or “spanning” criteria for the small scale affine system \(\{\psi(a_j x - k) : j > 0, k \in {\mathbb{Z}}^d \}\) in \(W^{m,p}({\mathbb{R}}^d)\) . We also span Sobolev space by derivatives and differences of affine systems, and we raise an open problem: does the Gaussian affine system span Sobolev space?
  相似文献   

3.
If a graph submanifold (xf(x)) of a Riemannian warped product space \((M^m\times _{e^{\psi }}N^n,\tilde{g}=g+ e^{2\psi }h)\) is immersed with parallel mean curvature H, then we obtain a Heinz-type estimation of the mean curvature. Namely, on each compact domain D of M, \(m\Vert H\Vert \le \frac{A_{\psi }(\partial D)}{V_{\psi }(D)}\) holds, where \(A_{\psi }(\partial D)\) and \(V_{\psi }(D)\) are the \({\psi }\)-weighted area and volume, respectively. In particular, \(H=0\) if (Mg) has zero-weighted Cheeger constant, a concept recently introduced by Impera et al. (Height estimates for killing graphs. arXiv:1612.01257, 2016). This generalizes the known cases \(n=1\) or \(\psi =0\). We also conclude minimality using a closed calibration, assuming \((M,g_*)\) is complete where \(g_*=g+e^{2\psi }f^*h\), and for some constants \(\alpha \ge \delta \ge 0\), \(C_1>0\) and \(\beta \in [0,1)\), \(\Vert \nabla ^*\psi \Vert ^2_{g_*}\le \delta \), \(\mathrm {Ricci}_{\psi ,g_*}\ge \alpha \), and \({\mathrm{det}}_g(g_*)\le C_1 r^{2\beta }\) holds when \(r\rightarrow +\infty \), where r(x) is the distance function on \((M,g_*)\) from some fixed point. Both results rely on expressing the squared norm of the mean curvature as a weighted divergence of a suitable vector field.  相似文献   

4.
We consider the perturbed Schrödinger equation
$\left\{\begin{array}{ll}{- \varepsilon ^2 \Delta u + V(x)u = P(x)|u|^{p - 2} u + k(x)|u|^{2* - 2} u} &; {\text{for}}\, x \in {\mathbb{R}}^N\\ \qquad \qquad \quad {u(x) \rightarrow 0} &; \text{as}\, {|x| \rightarrow \infty} \end{array} \right.$
where \(N\geq 3, \ 2^*=2N/(N-2)\) is the Sobolev critical exponent, \(p\in (2, 2^*)\) , P(x) and K(x) are bounded positive functions. Under proper conditions on V we show that it has at least one positive solution provided that \(\varepsilon\leq{\mathcal{E}}\) ; for any \(m\in{\mathbb{N}}\) , it has m pairs of solutions if \(\varepsilon\leq{\mathcal{E}}_{m}\) ; and suppose there exists an orthogonal involution \(\tau:{\mathbb{R}}^{N}\to{\mathbb{R}}^{N}\) such that V(x), P(x) and K(x) are τ -invariant, then it has at least one pair of solutions which change sign exactly once provided that \(\varepsilon\leq{\mathcal{E}}\) , where \({\mathcal{E}}\) and \({\mathcal{E}}_{m}\) are sufficiently small positive numbers. Moreover, these solutions \(u_\varepsilon\to 0\) in \(H^1({\mathbb{R}}^N)\) as \(\varepsilon\to 0\) .
  相似文献   

5.
The group of bisections of groupoids plays an important role in the study of Lie groupoids. In this paper another construction is introduced. Indeed, for a topological groupoid G, the set of all continuous self-maps f on G such that (xf(x)) is a composable pair for every \(x\in G\), is denoted by \(S_G\). We show that \(S_G\) by a natural binary operation is a monoid. \(S_G(\alpha )\), the group of units in \(S_G\) precisely consists of those \(f\in S_G\) such that the map \(x\mapsto xf(x)\) is a bijection on G. Similar to the group of bisections, \(S_G(\alpha )\) acts on G from the right and on the space of continuous self-maps on G from the left. It is proved that \(S_G(\alpha )\) with the compact- open topology inherited from C(GG) is a left topological group. For a compact Hausdorff groupoid G it is proved that the group of bisections of \(G^2\) is isomorphic to the group \(S_G(\alpha )\) and the group of transitive bisections of G, \(Bis_T(G)\), is embedded in \(S_G(\alpha )\), where \(G^2\) is the groupoid of all composable pairs.  相似文献   

6.
Given a connected simple graph \(G=(V(G),E(G))\), a set \(S\subseteq V(G)\) is said to be a 2-metric generator for G if and only if for any pair of different vertices \(u,v\in V(G)\), there exist at least two vertices \(w_1,w_2\in S\) such that \(d_G(u,w_i)\ne d_G(v,w_i)\), for every \(i\in \{1,2\}\), where \(d_G(x,y)\) is the length of a shortest path between x and y. The minimum cardinality of a 2-metric generator is the 2-metric dimension of G, denoted by \(\dim _2(G)\). The metric \(d_{G,2}: V(G)\times V(G)\longmapsto {\mathbb {N}}\cup \{0\}\) is defined as \(d_{G,2}(x,y)=\min \{d_G(x,y),2\}\). Now, a set \(S\subseteq V(G)\) is a 2-adjacency generator for G, if for every two vertices \(x,y\in V(G)\) there exist at least two vertices \(w_1,w_2\in S\), such that \(d_{G,2}(x,w_i)\ne d_{G,2}(y,w_i)\) for every \(i\in \{1,2\}\). The minimum cardinality of a 2-adjacency generator is the 2-adjacency dimension of G, denoted by \({\mathrm {adim}}_2(G)\). In this article, we obtain closed formulae for the 2-metric dimension of the lexicographic product \(G\circ H\) of two graphs G and H. Specifically, we show that \(\dim _2(G\circ H)=n\cdot {\mathrm {adim}}_2(H)+f(G,H),\) where \(f(G,H)\ge 0\), and determine all the possible values of f(GH).  相似文献   

7.
8.
Let D be a commutative domain with field of fractions K and let A be a torsion-free D-algebra such that \(A \cap K = D\). The ring of integer-valued polynomials on A with coefficients in K is \( Int _K(A) = \{f \in K[X] \mid f(A) \subseteq A\}\), which generalizes the classic ring \( Int (D) = \{f \in K[X] \mid f(D) \subseteq D\}\) of integer-valued polynomials on D. The condition on \(A \cap K\) implies that \(D[X] \subseteq Int _K(A) \subseteq Int (D)\), and we say that \( Int _K(A)\) is nontrivial if \( Int _K(A) \ne D[X]\). For any integral domain D, we prove that if A is finitely generated as a D-module, then \( Int _K(A)\) is nontrivial if and only if \( Int (D)\) is nontrivial. When A is not necessarily finitely generated but D is Dedekind, we provide necessary and sufficient conditions for \( Int _K(A)\) to be nontrivial. These conditions also allow us to prove that, for D Dedekind, the domain \( Int _K(A)\) has Krull dimension 2.  相似文献   

9.
Let \(k\ge 1\) and \(n_1,\ldots ,n_k\ge 1\) be some integers. Let \(S(n_1,\ldots ,n_k)\) be a tree T such that T has a vertex v of degree k and \(T{\setminus } v\) is the disjoint union of the paths \(P_{n_1},\ldots ,P_{n_k}\), that is \(T{\setminus } v\cong P_{n_1}\cup \cdots \cup P_{n_k}\) so that every neighbor of v in T has degree one or two. The tree \(S(n_1,\ldots ,n_k)\) is called starlike tree, a tree with exactly one vertex of degree greater than two, if \(k\ge 3\). In this paper we obtain the eigenvalues of starlike trees. We find some bounds for the largest eigenvalue (for the spectral radius) of starlike trees. In particular we prove that if \(k\ge 4\) and \(n_1,\ldots ,n_k\ge 2\), then \(\frac{k-1}{\sqrt{k-2}}<\lambda _1(S(n_1,\ldots ,n_k))<\frac{k}{\sqrt{k-1}}\), where \(\lambda _1(T)\) is the largest eigenvalue of T. Finally we characterize all starlike trees that all of whose eigenvalues are in the interval \((-2,2)\).  相似文献   

10.
Let k be a positive integer, x a large real number, and let \(C_n\) be the cyclic group of order n. For \(k\le n\le x\) we determine the mean average order of the subgroups of \(C_n\) generated by k distinct elements and we give asymptotic results of related averaging functions of the orders of subgroups of cyclic groups. The average order is expressed in terms of Jordan’s totient functions and Stirling numbers of the second kind. We have the following consequence. Let k and x be as above. For \(k\le n\le x\), the mean average proportion of \(C_n\) generated by k distinct elements approaches \(\zeta (k+2)/\zeta (k+1)\) as x grows, where \(\zeta (s)\) is the Riemann zeta function.  相似文献   

11.
12.
We study the problem of minimizing the functional \(I(\phi ) = \int\limits_\Omega {W(x,D\phi )dx}\) on a new class of mappings. We relax summability conditions for admissible deformations to φ ∈ W n 1 (Ω) and growth conditions on the integrand W(x, F). To compensate for that, we require the condition \(\frac{{\left| {D\phi (x)} \right|^n }} {{J(x,\phi )}} \leqslant M(x) \in L_s (\Omega )\), s > n ? 1, on the characteristic of distortion. On assuming that the integrand W(x, F) is polyconvex and coercive, we obtain an existence theorem for the problem of minimizing the functional I(φ) on a new family of admissible deformations A.  相似文献   

13.
This paper is concerned with the existence of positive solution to a class of singular fourth order elliptic equation of Kirchhoff type
$$\begin{aligned} \triangle ^2 u-\lambda M(\Vert \nabla u\Vert ^2)\triangle u-\frac{\mu }{\vert x\vert ^4}u=\frac{h(x)}{u^\gamma }+k(x)u^\alpha , \end{aligned}$$
under Navier boundary conditions, \(u=\triangle u=0\). Here \(\varOmega \subset {\mathbf {R}}^N\), \(N\ge 1\) is a bounded \(C^4\)-domain, \(0\in \varOmega \), h(x) and k(x) are positive continuous functions, \(\gamma \in (0,1)\), \(\alpha \in (0,1)\) and \(M:{\mathbf {R}}^+\rightarrow {\mathbf {R}}^+\) is a continuous function. By using Galerkin method and sharp angle lemma, we will show that this problem has a positive solution for \(\lambda > \frac{\mu }{\mu ^*m_0}\) and \(0<\mu <\mu ^*\). Here \(\mu ^*=\Big (\frac{N(N-4)}{4}\Big )^2\) is the best constant in the Hardy inequality. Besides, if \(\mu =0\), \(\lambda >0\) and hk are Lipschitz functions, we show that this problem has a positive smooth solution. If \(h,k\in C^{2,\,\theta _0}(\overline{\varOmega })\) for some \(\theta _0\in (0,1)\), then this problem has a positive classical solution.
  相似文献   

14.
Differential and falsified sampling expansions \(\sum _{k\in {\mathbb {Z}}^d}c_k\varphi (M^jx+k)\), where M is a matrix dilation, are studied. In the case of differential expansions, \(c_k=Lf(M^{-j}\cdot )(-k)\), where L is an appropriate differential operator. For a large class of functions \(\varphi \), the approximation order of differential expansions was recently studied. Some smoothness of the Fourier transform of \(\varphi \) from this class is required. In the present paper, we obtain similar results for a class of band-limited functions \(\varphi \) with the discontinuous Fourier transform. In the case of falsified expansions, \(c_k\) is the mathematical expectation of random integral average of a signal f near the point \(M^{-j}k\). To estimate the approximation order of the falsified sampling expansions we compare them with the differential expansions. Error estimations in \(L_p\)-norm are given in terms of the Fourier transform of f.  相似文献   

15.
Let G be a finite simple graph and I(G) denote the corresponding edge ideal. For all \(s \ge 1\), we obtain upper bounds for \({\text {reg}}(I(G)^s)\) for bipartite graphs. We then compare the properties of G and \(G'\), where \(G'\) is the graph associated with the polarization of the ideal \((I(G)^{s+1} : e_1\cdots e_s)\), where \(e_1,\cdots , e_s\) are edges of G. Using these results, we explicitly compute \({\text {reg}}(I(G)^s)\) for several subclasses of bipartite graphs.  相似文献   

16.
In an earlier paper Buczolich, Elekes, and the author described the Hausdorff dimension of the level sets of a generic real-valued continuous function (in the sense of Baire category) defined on a compact metric space K by introducing the notion of topological Hausdorff dimension. Later on, the author extended the theory for maps from K to \({\mathbb {R}}^n\). The main goal of this paper is to generalize the relevant results for topological and packing dimensions and to obtain new results for sufficiently homogeneous spaces K even in the case case of Hausdorff dimension. Let K be a compact metric space and let us denote by \(C(K,{\mathbb {R}}^n)\) the set of continuous maps from K to \({\mathbb {R}}^n\) endowed with the maximum norm. Let \(\dim _{*}\) be one of the topological dimension \(\dim _T\), the Hausdorff dimension \(\dim _H\), or the packing dimension \(\dim _P\). Define
$$\begin{aligned} d_{*}^n(K)=\inf \left\{ \dim _{*}(K{\setminus } F): F\subset K \text { is } \sigma \text {-compact with } \dim _T F<n\right\} . \end{aligned}$$
We prove that \(d^n_{*}(K)\) is the right notion to describe the dimensions of the fibers of a generic continuous map \(f\in C(K,{\mathbb {R}}^n)\). In particular, we show that \(\sup \{\dim _{*}f^{-1}(y): y\in {\mathbb {R}}^n\} =d^n_{*}(K)\) provided that \(\dim _T K\ge n\), otherwise every fiber is finite. Proving the above theorem for packing dimension requires entirely new ideas. Moreover, we show that the supremum is attained on the left hand side of the above equation. Assume \(\dim _T K\ge n\). If K is sufficiently homogeneous, then we can say much more. For example, we prove that \(\dim _{*}f^{-1}(y)=d^n_{*}(K)\) for a generic \(f\in C(K,{\mathbb {R}}^n)\) for all \(y\in {{\mathrm{int}}}f(K)\) if and only if \(d^n_{*}(U)=d^n_{*}(K)\) or \(\dim _T U<n\) for all open sets \(U\subset K\). This is new even if \(n=1\) and \(\dim _{*}=\dim _H\). It is known that for a generic \(f\in C(K,{\mathbb {R}}^n)\) the interior of f(K) is not empty. We augment the above characterization by showing that \(\dim _T \partial f(K)=\dim _H \partial f(K)=n-1\) for a generic \(f\in C(K,{\mathbb {R}}^n)\). In particular, almost every point of f(K) is an interior point. In order to obtain more precise results, we use the concept of generalized Hausdorff and packing measures, too.
  相似文献   

17.
We study packing problems with matroid structures, which includes the strength of a graph of Cunningham and scheduling problems. If \(\mathcal {M}\) is a matroid over a set of elements S with independent set \(\mathcal {I}\), and \(m=|S|\), we suppose that we are given an oracle function that takes an independent set \(A\in \mathcal {I}\) and an element \(e\in S\) and determines if \(A\cup \{e\}\) is independent in time I(m). Also, given that the elements of A are represented in an ordered way \(A=\{A_1,\dots ,A_k\}\), we denote the time to check if \(A\cup \{e\}\notin \mathcal {I}\) and if so, to find the minimum \(i\in \{0,\dots ,k\}\) such that \(\{A_1,\dots ,A_i\}\cup \{e\}\notin \mathcal {I}\) by \(I^*(m)\). Then, we describe a new FPTAS that computes for any \(\varepsilon >0\) and for any matroid \(\mathcal {M}\) of rank r over a set S of m elements, in memory space O(m), the packing \(\varLambda ({\mathcal {M}})\) within \(1+\varepsilon \) in time \(O(mI^*(m)\log (m)\log (m/r)/\varepsilon ^2)\), and the covering \(\varUpsilon ({\mathcal {M}})\) in time \(O(r\varUpsilon ({\mathcal {M}})I(m)\log (m)\log (m/r)/\varepsilon ^2)\). This method outperforms in time complexity by a factor of \(\varOmega (m/r)\) the FPTAS of Plotkin, Shmoys, and Tardos, and a factor of \(\varOmega (m)\) the FPTAS of Garg and Konemann. On top of the value of the packing and the covering, our algorithm exhibits a combinatorial object that proves the approximation. The applications of this result include graph partitioning, minimum cuts, VLSI computing, job scheduling and others.  相似文献   

18.
For any homogeneous ideal I in \(K[x_1,\ldots ,x_n]\) of analytic spread \(\ell \), we show that for the Rees algebra R(I), \({\text {reg}}_{(0,1)}^{\mathrm{syz}}(R(I))={\text {reg}}_{(0,1)}^{\mathrm{T}}(R(I))\). We compute a formula for the (0, 1)-regularity of R(I), which is a bigraded analog of Theorem 1.1 of Aramova and Herzog (Am. J. Math. 122(4) (2000) 689–719) and Theorem 2.2 of Römer (Ill. J. Math. 45(4) (2001) 1361–1376) to R(I). We show that if the defect sequence, \(e_k:= {\text {reg}}(I^k)-k\rho (I)\), is weakly increasing for \(k \ge {\text {reg}}^{\mathrm{syz}}_{(0,1)}(R(I))\), then \({\text {reg}}(I^j)=j\rho (I)+e\) for \(j \ge {\text {reg}}^{\mathrm{syz}}_{(0,1)}(R(I))+\ell \), where \(\ell ={\text {min}}\{\mu (J)~|~ J\subseteq I \text{ a } \text{ graded } \text{ minimal } \text{ reduction } \text{ of } I\}\). This is an improvement of Corollary 5.9(i) of [16].  相似文献   

19.
A pure Mendelsohn triple system of order v, denoted by PMTS(v), is a pair \((X,\mathcal {B})\) where X is a v-set and \(\mathcal {B}\) is a collection of cyclic triples on X such that every ordered pair of X belongs to exactly one triple of \(\mathcal {B}\) and if \(\langle a,b,c\rangle \in \mathcal {B}\) implies \(\langle c,b,a\rangle \notin \mathcal {B}\). An overlarge set of PMTS(v), denoted by OLPMTS(v), is a collection \(\{(Y{\setminus }\{y_i\},{\mathcal {A}}_i)\}_i\), where Y is a \((v+1)\)-set, \(y_i\in Y\), each \((Y{\setminus }\{y_i\},{\mathcal {A}}_i)\) is a PMTS(v) and these \({\mathcal {A}}_i\)s form a partition of all cyclic triples on Y. It is shown in [3] that there exists an OLPMTS(v) for \(v\equiv 1,3\) (mod 6), \(v>3\), or \(v \equiv 0,4\) (mod 12). In this paper, we shall discuss the existence problem of OLPMTS(v)s for \(v\equiv 6,10\) (mod 12) and get the following conclusion: there exists an OLPMTS(v) if and only if \(v\equiv 0,1\) (mod 3), \(v>3\) and \(v\ne 6\).  相似文献   

20.
Let M be a stratum of a compact stratified space A. It is equipped with a general adapted metric g, which is slightly more general than the adapted metrics of Nagase and Brasselet–Hector–Saralegi. In particular, g has a general type, which is an extension of the type of an adapted metric. A restriction on this general type is assumed, and then, g is called good. We consider the maximum/minimum ideal boundary condition, \(d_{\mathrm{max/min}}\), of the compactly supported de Rham complex on M, in the sense of Brüning–Lesch. Let \(H^*_{\mathrm{max/min}}(M)\) and \(\Delta _{\mathrm{max/min}}\) denote the cohomology and Laplacian of \(d_{\mathrm{max/min}}\). The first main theorem states that \(\Delta _{\mathrm{max/min}}\) has a discrete spectrum satisfying a weak form of the Weyl’s asymptotic formula. The second main theorem is a version of Morse inequalities using \(H_{\mathrm{max/min}}^*(M)\) and what we call rel-Morse functions. An ingredient of the proofs of both theorems is a version for \(d_{\mathrm{max/min}}\) of the Witten’s perturbation of the de Rham complex. Another ingredient is certain perturbation of the Dunkl harmonic oscillator previously studied by the authors using classical perturbation theory. The condition on g to be good is general enough in the following sense. Assume that A is a stratified pseudomanifold, and consider its intersection homology \(I^{\bar{p}}H_*(A)\) with perversity \(\bar{p}\); in particular, the lower and upper middle perversities are denoted by \(\bar{m}\) and \(\bar{n}\), respectively. Then, for any perversity \(\bar{p}\le \bar{m}\), there is an associated good adapted metric on M satisfying the Nagase isomorphism \(H^r_{\mathrm{max}}(M)\cong I^{\bar{p}}H_r(A)^*\) (\(r\in \mathbb {N}\)). If M is oriented and \(\bar{p}\ge \bar{n}\), we also get \(H^r_{\mathrm{min}}(M)\cong I^{\bar{p}}H_r(A)\). Thus our version of the Morse inequalities can be described in terms of \(I^{\bar{p}}H_*(A)\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号