首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluidization behavior of Geldart A particles in a gas–solid micro-fluidized bed was investigated by Eulerian–Eulerian numerical simulation. The commonly used Gidaspow drag model was tested first. The simulation showed that the predicted minimum bubbling velocities were significantly lower than the experimental data even when an extremely fine grid size (of approximately one particle diameter) was used. The modified Gibilaro drag model was therefore tested next. The predicted minimum bubbling velocity and bed voidage were in reasonable agreement with the experimental data available in literature. The experimentally observed regime transition phenomena from bubbling to slugging were also reproduced successfully in the simulations. Parametric studies indicated that the solid-wall boundary conditions had a significant impact on the predicted gas and solid flow behavior.  相似文献   

2.
3.
In this work, a new drag model for TFM simulation in gas–solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag characteristics of Geldart-B particles under low gas velocities. In the new model, the meso-scale structure was characterized while accounting for the bubble and meso-scale structure effects on the drag coefficient. The Fluent software, incorporating the new drag model, was used to simulate the fluidization behavior. Experiments were performed in a Plexiglas cylindrical fluidized bed consisting of quartz sand as the solid phase and ambient air as the gas phase. Comparisons based on the solids hold-up inside the fluidized bed at different superficial gas velocities, were made between the 2D Cartesian simulations, and the experimental data, showing that the results of the new drag model reached much better agreement with experimental data than those of the Gidaspow drag model did.  相似文献   

4.
In this work, a new drag model for TFM simulation in gas-solid bubbling fluidized beds was proposed, and a set of equations was derived to determine the meso-scale structural parameters to calculate the drag characteristics of Geldart-B particles under low gas velocities. In the new model, the meso-scale structure was characterized while accounting for the bubble and meso-scale structure effects on the drag coefficient. The Fluent software, incorporating the new drag model, was used to simulate the fluidization behavior. Experiments were performed in a Plexiglas cylindrical fluidized bed consisting of quartz sand as the solid phase and ambient air as the gas phase. Comparisons based on the solids hold-up inside the fluidized bed at different superficial gas velocities, were made between the 2D Cartesian simulations, and the experimental data, showing that the results of the new drag model reached much better agreement with exoerimental data than those of the Gidasoow dra~ model did.  相似文献   

5.
鼓泡流化床因其较高的传热特性以及较好的相间接触已经被广泛应用于工业生产中,而对鼓泡流态化气固流动特性的充分认知是鼓泡流化床设计的关键.在鼓泡流化床中,气泡相和乳化相的同时存在使得床中呈现非均匀流动结构,而这种非均匀结构给鼓泡流化床的数值模拟造成了很大的误差.基于此,以气泡作为介尺度结构,建立了多尺度曳力消耗能量最小的稳定性条件,构建了适用于鼓泡流化床的多尺度气固相间曳力模型.结合双流体模型,对A类和B类颗粒的鼓泡流化床中气固流动特性进行了模拟研究,分析了气泡速度、气泡直径等参数的变化规律.研究表明,与传统的曳力模型相比,考虑气泡影响的多尺度气固相间曳力模型给出的曳力系数与颗粒浓度的关系是一条分布带,建立了控制体内曳力系数与局部结构参数之间的关系.通过模拟得到的颗粒浓度和速度与实验的比较可以发现,考虑气泡影响的多尺度曳力模型可以更好地再现实验结果.通过A类和B类颗粒的鼓泡床模拟研究发现,A类颗粒的鼓泡床模拟受多尺度曳力模型的影响更为显著.   相似文献   

6.
A cold flow model of an 8 MW dual fluidized bed (DFB) system is simulated using the commercial computational particle fluid dynamics (CPFD) software package Barracuda. The DFB system comprises a bubbling bed connected to a fast fluidized bed with the bed material circulating between them. As the hydrodynamics in hot DFB plants are complex because of high temperatures and many chemical reaction processes, cold flow models are used. Performing numerical simulations of cold flows enables a focus on the hydrodynamics as the chemistry and heat and mass transfer processes can be put aside. The drag law has a major influence on the hydrodynamics, and therefore its influence on pressure, particle distribution, and bed material recirculation rate is calculated using Barracuda and its results are compared with experimental results. The drag laws used were energy-minimization multiscale (EMMS), Ganser, Turton–Levenspiel, and a combination of Wen–Yu/Ergun. Eleven operating points were chosen for that study and each was calculated with the aforementioned drag laws. The EMMS drag law best predicted the pressure and distribution of the bed material in the different parts of the DFB system. For predicting the bed material recirculation rate, the Ganser drag law showed the best results. However, the drag laws often were not able to predict the experimentally found trends of the bed material recirculation rate. Indeed, the drag law significantly influences the hydrodynamic outcomes in a DFB system and must be chosen carefully to obtain meaningful simulation results. More research may enable recommendations as to which drag law is useful in simulations of a DFB system with CPFD.  相似文献   

7.
Most existing models for predicting bubble size and bubble frequency have been developed for freely bubbling fluidized beds. Accurate prediction of bubbling behavior in deep fluidized beds, however, has been a challenge due to the higher degree of bubble coalescence and break up, high probability of the slugging regime, partial fluidization, and chaotic behavior in the bubbling regime. In this work, the bubbling and fluidization behavior of potash particles was investigated in a deep fluidized bed employing a twin-plane electrical capacitance tomography (ECT) system. Solid volume fraction, average bubble velocity, average bubble diameter, and bubble frequency in both bubbling and slugging regimes were measured at two different bed height ratios (H/D = 3.5 and H/D = 3.78). This work is the first to illustrate a sequential view of bubbles at different superficial gas velocities in a fluidized bed. The results show that both the bubble diameter and rising velocity increased with increasing the superficial gas velocity for the two bed heights, with larger values observed in the deeper bed compared to the shallower one. Predicted values for bubble diameter, bubble rise velocity and bubble frequency from different models are compared with the experimental data obtained from the ECT system in this work. Good agreement has been achieved between the values predicted by the previous models and the experimental data for the bubble diameter and bubble rise velocity with an average absolute deviation of 16% and 15% for the bed height of 49 cm and 13% and 8% for the bed height of 53 cm, respectively.  相似文献   

8.
CFD-DEM已经广泛应用到喷动床的研究中,其模拟的准确性与用于处理颗粒-流体相互作用的曳力模型密切相关。为了探究不同曳力模型对喷动床CFD-DEM模拟结果的影响,基于非结构化网格的喷动床仿真,使用7个曳力模型分别对锥底喷动床内气固两相运动进行了数值模拟。综合床层压降、喷动高度和颗粒速度特性三个方面,Wen-Yu模型和Gibilaro模型预测的气固两相运动最剧烈,其次是Di Felice模型、Syamlal-O’Brien模型、Gidaspow模型和Huilin-Gidaspow模型,BVK模型预测的气固两相运动最平缓。由于模拟的气固两相体系属于密相体系,Huilin-Gidaspow模型的光滑过渡函数没有产生效果,所以Gidaspow模型和Huilin-Gidaspow模型在各个方面的预测结果基本一致。  相似文献   

9.
We have investigated the effect of cohesion and drag models on the bed hydrodynamics of Geldart A particles based on the two-fluid (TF) model.For a high gas velocity Uo=0.03m/s, we found a transition from the homogeneous fluidization to bubbling fluidization with an increase of the coefficient C1, which is used to account for the contribution of cohesion to the excess compressibility. Thus cohesion can play a role in the bed expansion of Geldart A particles. Apart from cohesion, we have also investigated the influence of the drag models. When using the Wen and Yu drag correlation with an exponent n=4.65, we find an under-prediction of the bed expansion at low gas velocities (Uo=0.009 m/s). When using a larger exponent (n=9.6), as reported in experimental studies of gas-fluidization,a much better agreement with the experimental bed expansion is obtained. These findings suggest that at low gas velocity,a scale-down of the commonly used drag model is required. On the other hand, a scale-up of the commonly used drag model is necessary at high gas velocity (Uo=0.2 and 0.06 m/s). We therefore conclude that scaling the drag force represent only an ad hoc way of repairing the deficiencies of the TF model, and that a far more detailed study is required into the origin of the failure of the TF model for simulating fluidized beds of fine powders.  相似文献   

10.
In this work, a discrete particle model (DPM) was applied to investigate the dynamic characteristics in a gas–solid bubbling fluidized bed of binary solid particles. The solid phase was simulated by the hard-sphere discrete particle model. The large eddy simulation (LES) method was used to simulate the gas phase. To improve the accuracy of the simulation, an improved sub-grid scale (SGS) model in the LES method was also applied. The mutative Smagorinsky constant case was compared with the previously published experimental data. The simulation by the mutative Smagorinsky constant model exhibited better agreement with the experimental data than that by the common invariant Smagorinsky constant model. Various restitution coefficients and different compositions of binary solids were investigated to determine their influences on the rotation characteristics and granular temperatures of the particles. The particle translational and rotational characteristic distributions were related to certain simulation parameters.  相似文献   

11.
In this work,a discrete particle model(DPM) was applied to investigate the dynamic characteristics in a gas-solid bubbling fluidized bed of binary solid particles.The solid phase was simulated by the hardsphere discrete particle model.The large eddy simulation(LES) method was used to simulate the gas phase.To improve the accuracy of the simulation,an improved sub-grid scale(SGS) model in the LES method was also applied.The mutative Smagorinsky constant case was compared with the previously published experimental data.The simulation by the mutative Smagorinsky constant model exhibited better agreement with the experimental data than that by the common invariant Smagorinsky constant model.Various restitution coefficients and different compositions of binary solids were investigated to determine their influences on the rotation characteristics and granular temperatures of the particles.The particle translational and rotational characteristic distributions were related to certain simulation parameters.  相似文献   

12.
In this study, a Eulerian-Eulerian two-fluid model combined with the kinetic theory of granular flow is adopted to simulate power-law fluid–solid two-phase flow in the fluidized bed. Two new power-law liquid–solid drag models are proposed based on the rheological equation of power-law fluid and pressure drop. One called model A is a modified drag model considering tortuosity of flow channel and ratio of the throat to pore, and the other called model B is a blending drag model combining drag coefficients of high and low particle concentrations. Predictions are compared with experimental data measured by Lali et al., where the computed porosities from model B are closer to the measured data than other models. Furthermore, the predicted pressure drop rises as liquid velocity increases, while it decreases with the increase of particle size. Simulation results indicate that the increases of consistency coefficient and flow behavior index lead to the decrease of drag coefficient, and particle concentration, granular temperature, granular pressure, and granular viscosity go down accordingly.  相似文献   

13.
In this paper, the pressure fluctuation in a fluidized bed was measured and processed via standard devia- tion and power spectrum analysis to investigate the dynamic behavior of the transition from the bubbling to turbulent regime. Two types (Geldart B and D) of non-spherical particles, screened from real bed materials, and their mixture were used as the bed materials. The experiments were conducted in a semi- industrial testing apparatus. The experimental results indicated that the fluidization characteristics of the non-spherical Geldart D particles differed from that of the spherical particles at gas velocities beyond the transition velocity Uo The standard deviation of the pressure fluctuation measured in the bed increased with the gas velocity, while that measured in the plenum remained constant. Compared to the coarse particles, the fine particles exerted a stronger influence on the dynamic behavior of the fluidized bed and promoted the fluidization regime transition from bubbling toward turbulent. The power spectrum of the pressure fluctuation was calculated using the auto-regressive (AR) model; the hydrodynamics of the flu- idized bed were characterized by the major frequency of the power spectrum of the pressure fluctuation. By combining the standard deviation analysis, a new method was proposed to determine the transition velocity Uk via the analysis of the change in the major frequency. The first major frequency was observed to vary within the range of 1.5 to 3 Hz.  相似文献   

14.
A cluster-based drag model is proposed for the gas–solid circulating fluidized bed (CFB) riser by including the cluster information collected from image processing and wavelet analysis into the calculation of system drag. The performance of the proposed drag model is compared with some commonly used drag models. A good agreement with the experimental data is achieved by the proposed cluster-based drag model. Error analysis of the proposed cluster-based drag model based on the local distributions of solids holdup and particle velocity is conducted. The clustering phenomenon in the low-density and high-density CFB risers and the effect of the cluster size on the simulation accuracy are also numerically studied by the proposed drag model.  相似文献   

15.
The discrete hard sphere particle model (DPM) is applied in this work to study numerically the distributions of particle and bubble granular temperatures in a bubbling fluidized bed. The dimensions of the bed and other parameters are set to correspond to those of Müller et al. (2008). Various drag models and operational parameters are investigated to find their influence on particle and bubble granular temperatures. Various inlet superficial gas velocities are used in this work to obtain their effect on flow characteristics. It is found that the superficial gas velocity has the most important effect on granular temperatures including bubble granular temperature, particle translational granular temperature and particle rotational granular temperature. The drag force model affects more seriously the large scale variables such as the bubble granular temperature. Restitution coefficient influences all granular temperatures to some degree. Simulation results are compared with experimental results by Müller et al. (2008) showing reasonable agreement.  相似文献   

16.
We present an Euler–Lagrange method for the simulation of wood gasification in a bubbling fluidized bed. The gas phase is modeled as a continuum using the 2D Navier–Stokes equations and the solid phase is modeled by a Discrete Element Method (DEM) using a soft-sphere approach for the particle collision dynamic. Turbulence is included via a Large-Eddy approach using the Smagorinsky sub-grid model. The model takes into account detailed gas phase chemistry, zero-dimensional modeling of the pyrolysis and gasification of each individual particle, particle shrinkage, and heat and mass transfer between the gas phase and the particulate phase. We investigate the influence of wood feeding rate and compare exhaust gas compositions and temperature results obtained with the model against experimental data of a laboratory scale bubbling fluidized bed reactor.  相似文献   

17.
Particle charge density is vitally important for monitoring electrostatic charges and understanding particle charging behavior in fluidized beds. In this paper, a dual-material probe was tested in a gas–solid fluidized bed for measuring the charge density of fluidized particles. The experiments were conducted in a two-dimensional fluidized bed with both single bubble injection and freely bubbling, at various particle charge densities and superficial gas velocities. Uniformly sized glass beads were used to eliminate complicating factors at this early stage of probe development. Peak currents, extracted from dynamic signals, were decoupled to determine charge densities of bed particles, which were found to be qualitatively and quantitatively consistent with charge densities directly measured by Faraday cup from the freely bubbling fluidized bed. The current signals were also decoupled to estimate bubble rise velocities, which were found to be in reasonable agreement with those obtained directly by analyzing video images.  相似文献   

18.
Particle charge density is vitally important for monitoring electrostatic charges and understanding particle charging behavior in fluidized beds.In this paper,a dual-material probe was tested in a gas-solid fluidized bed for measuring the charge density of fluidized particles.The experiments were conducted in a two-dimensional fluidized bed with both single bubble injection and freely bubbling,at various particle charge densities and superficial gas velocities.Uniformly sized glass beads were used to eliminate complicating factors at this early stage of probe development.Peak currents,extracted from dynamic signals,were decoupled to determine charge densities of bed particles,which were found to be qualitatively and quantitatively consistent with charge densities directly measured by Faraday cup from the freely bubbling fluidized bed.The current signals were also decoupled to estimate bubble rise velocities,which were found to be in reasonable agreement with those obtained directly by analyzing video images.  相似文献   

19.
A particle sub-model describing the bed characteristics of a bubbling fluidised bed is presented. Atomisation air, applied at high pressures via a nozzle positioned above the bed for spray formation, is incorporated in the model since its presence has a profound influence on the bed characteristics, though the spray itself is not yet considered. A particle sub-model is developed using well-known empirical relations for particle drag force, bubble growth and velocity and particle distribution above the fluidised-bed surface. Simple but effective assumptions and abstractions were made concerning bubble distribution, particle ejection at the bed surface and the behaviour of atomisation air flow upon impacting the surface of a bubbling fluidised bed. The model was shown to be capable of predicting the fluidised bed characteristics in terms of bed heights, voidage distributions and solids volume fractions with good accuracy in less than 5 min of calculation time on a regular desktop PC. It is therefore suitable for incorporation into general process control models aimed at dynamic control for process efficiency and product quality in top-spray fluidised bed coating processes.  相似文献   

20.
In this paper, the pressure fluctuation in a fluidized bed was measured and processed via standard deviation and power spectrum analysis to investigate the dynamic behavior of the transition from the bubbling to turbulent regime. Two types (Geldart B and D) of non-spherical particles, screened from real bed materials, and their mixture were used as the bed materials. The experiments were conducted in a semi-industrial testing apparatus. The experimental results indicated that the fluidization characteristics of the non-spherical Geldart D particles differed from that of the spherical particles at gas velocities beyond the transition velocity Uc. The standard deviation of the pressure fluctuation measured in the bed increased with the gas velocity, while that measured in the plenum remained constant. Compared to the coarse particles, the fine particles exerted a stronger influence on the dynamic behavior of the fluidized bed and promoted the fluidization regime transition from bubbling toward turbulent. The power spectrum of the pressure fluctuation was calculated using the auto-regressive (AR) model; the hydrodynamics of the fluidized bed were characterized by the major frequency of the power spectrum of the pressure fluctuation. By combining the standard deviation analysis, a new method was proposed to determine the transition velocity Uk via the analysis of the change in the major frequency. The first major frequency was observed to vary within the range of 1.5 to 3 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号