首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
电解液添加成份对贮氢电极性能影响的初步研究蔡称心,黄翠虹(南京大学化学系,南京,210008)王宝忱(中国科学院长春应用化学研究所,长春130022)关键词:贮氢电极,MH/Ni电池,添加剂自从Justi和Ewe ̄[1,2]发现贮氢合金能够用电化学方...  相似文献   

2.
Laves相贮氢合金是目前贮氢材料研究与开发的热点之一。本文概述了Laves相合金的结构、贮氢机理、贮氢性能以及它在Ni/MH电池应用中的最新进展。  相似文献   

3.
表面修饰对贮氢电极电化学性能的影响蔡称心(南京大学化学系南京210093)王宝忱(中国科学院长春应用化学研究所)关键词:贮氢电极,Ni/MH电池,表面修饰Ni/MH(MetalHydride)二次电池由于在放电容量、干净度、重金属污染、耐过充过放电能...  相似文献   

4.
MlNi4Al和MlNi4Mn贮氢电极性能的研究*赵东江马松艳(绥化师专化学系绥化152061)关键词贮氢电极循环寿命自放电中图分类号O646.54镍/氢化物(Ni/MH)二次电池以其洁净、安全、高容量、大功率及长寿命等特点受到极大关注。贮氢电极材料...  相似文献   

5.
在金属氢化物一镍电池(MH/Ni)负极材料中,ABS型贮氢合金是非常具有吸引力的一种,以AB。型贮氢合金作为负极材料的MH/Ni电池目前已大批量进入市场.其中A代表混合稀土RE(主要成分为La,Ce,Pr,Nd);B代表Ni和Co,Mll,AI等取代元素.B侧取代元素已被广泛研究D,习,A侧混合稀土的成分也已引起人们的广泛重视*‘,’],*血1c等【阿针对儿一N13。5C00.75Mll。。A10.3,详细研究了L31。CI。BS系列合金,得出在。=0.2处合金具有较好的综合性能.本文针对B侧Ni。。。Coo,。Mno、。Alo二。(记为民)成分,在研…  相似文献   

6.
贮氢合金LaNi_(3.8)Co_(0.5)Mn_(0.4)Al_(0.3)表面化学镀镍的研究张允什,陈军(南开大学新能源材料化学研究所,天津,300071)关键词贮氢合金,化学镀镍,镍/氢电池目前,稀土系贮氢合金应用于镍/金属氢化物(镍/氢)电池存在的...  相似文献   

7.
贮氢合金表面处理改善Ni/MH电池1C充放电性能   总被引:4,自引:0,他引:4  
研究了贮氨合金两种表面化学处理方法对MH电极活化性能及Ni/MH电池IC充放电性能的影响:第一种处理方法是贮氢合金在6th。l·L-’KOH溶液中80T处理sh,第二种处理方法是在含有0.04mol·L-‘KBH4的6mol·L’‘KOH溶液中80t处理sh.通过MH电极的放电容量、充放电过程中电极极化和电化学阻抗谱测试评价了上述化学处理对电极活化性能的影响.电子探针表面分析表明化学处理后贮氢合金表面由于铝元素的优先溶解形成一层具有较高电催化活性的富镍表面层,它是改善电极活化性能的主要原因·以处理的贮氨合金为负极材料的Ni/MH电池具有较高IC充放电循环寿命和1.ZV以上放电容量.  相似文献   

8.
本文较为详细地介绍了研究稀土贮氢合金性能过程中几种常用的测试技术。在贮氢合金组织结构方面,应用XRD、SEM和金相测试技术,研究贮氢合金的相结构,通过有关公式计算合金晶粒尺寸,以及反映热处理工艺前后相结构、晶粒形貌、晶界的变化情况。在贮氢合金吸放氢机理方面,通过将贮氢合金粉制作成微电极,采用恒电位阶跃、交流阻抗、循环伏安电化学测试技术,研究稀土贮氢合金电极反应的动力学性能,计算合金电极的交换电流密度、氢扩散系数及固/液界面电荷传递电阻等参数;采用PCT测试仪,研究贮氢合金的储氢量、平衡氢压等性能。在贮氢合金电化学性能方面,通过采用模拟电池测试技术,研究贮氢合金的活化、放电容量、放电平台、循环等性能。  相似文献   

9.
MH—Ni电池低温性能的研究   总被引:1,自引:0,他引:1  
张文宽  石景仙 《电化学》1995,1(2):198-201
从合金组成及电解液组份研究了MH-Ni电池的低温性能,确定了适宜的合金组成和电解液组成。  相似文献   

10.
贮氢材料电极循环寿命的定量预测定时放电半衰期法的应用韩剑文,袁满雪,周作祥,赖城明(南开大学化学系天津300071)关键词:贮氢电极,循环寿命,半衰期。前文 ̄[1]讨论了应用定终点电位放电半衰期法来预测贮氢材料电极循环寿命的问题。本文讨论如何采用定时...  相似文献   

11.
The hydrogen ionization process is studied experimentally on an industrial sintered nickel oxide electrode in models of sealed nickel-metal hydride batteries. It is shown that the hydrogen ionization rates that are reached during overcharge by high current densities in conditions of forced gas delivery into the electrode pores (up to 40 mA cm?2) exceed the self-discharge rate of a nickel-hydrogen battery by two orders of magnitude. Up to 70% of hydrogen delivered into the compact assembly block undergoes ionization during forced charge of models of sealed nickel-metal hydride batteries with a closed hydrogen cycle. Two independent methods (potentiostatic and manometric) are used to determine the relationship between rates of hydrogen ionization with the degree of the electrode filling with gas and perform estimation of the process intensity at a unit reaction surface. It is established that, in conditions of forced gas delivery, practically all the hydrogen oxidation current is generated at the surface of the nickel oxide electrode beneath thin films of an electrolyte solution at the rate of 4–5 mA cm?2. It is shown that the hydrogen oxidation rate on a nickel oxide electrode filled in part by gas is independent of the electrode potential, probably because of a tangible contribution made by diffusion limitations to the overall hampering of the process.  相似文献   

12.
Two kinds of metal hydride alloys as the bi-functional catalyst concept for hydrogen generation and oxidation in hydrogen-diffusion electrodes were investigated. The AB5-type hydride electrode shows much higher catalytic activities than the Zr-based AB2-type hydride electrode. However, the activity of Zr-based hydride electrodes can be improved only after removal of zirconium oxides on surface by a 1.0 M HF solution. The experiments demonstrated that the both metal-hydride hydrogen-diffusion electrodes for cycles of hydrogen generation (12 h) and oxidation (12 h) had good stability under the current densities of 100 and 50 mA/cm2, respectively. The results also showed that small amounts of oxygen below 500 ppm and moisture up to 145,000 ppm in the hydrogen gas have little effect on the activity. It indicated that the hydride alloys as the non-noble-metal bi-functional catalysts in a reversible MH-air fuel cell have potential applications.  相似文献   

13.
Problems that are connected with utilization of oxygen evolving during overcharge of the nickel oxide electrode in sealed nickel metal hydride batteries are considered. It is established experimentally that the rate of the process of oxygen reduction in conditions of forced gas supply into pores of a metal hydride electrode increases by two orders of magnitude as compared with the intensity of this process during natural convection. Up to 80% of evolved oxygen undergo ionization on a metal hydride electrode in these conditions even in a regime of forced (hour-long) charge of a model sealed nickel-metal hydride battery. The dependence of the current density of oxygen reduction at a metal hydride electrode on the filling of the electrode’s porous space by oxygen is estimated with the aid of manometric and potentiostatic methods. It is shown that practically all the oxygen ionization current is generated at the walls of gas-filled electrode pores, under thin electrolyte films, with a local current intensity of 1–3 mA cm?2.  相似文献   

14.
The oxidation of titanium hydride powder by air oxygen and the influence of oxidation conditions on the degree of oxidation of hydride particles, specific gas content in the powder, and kinetics of its thermal decomposition were studied. The resistometry method was used to determine the effective activation energy of oxidation of titanium hydride by air oxygen. The content of the surface nonconducting phase formed by titanium oxide and oxohydride films under various oxidation conditions was estimated.  相似文献   

15.
Simultaneous determination of As and Sb by hydride generation atomic fluorescence spectrometry was developed with the dielectric barrier discharge plasma as the hydride atomizer. The low-temperature and atmospheric-pressure micro-plasma was generated in a quartz cylindrical configuration device, which was constructed by an axial internal electrode and an outer electrode surrounding outside of the tube. The optimization of the atomizer construction and parameters for hydride generation and fluorescence detection systems were carried out. Under the optimized conditions, the detection limits for As and Sb were 0.04 and 0.05 μg L−1, respectively. In addition, the applicability of the present method was confirmed by the detection of As and Sb in reference materials of quartz sandstone (GBW07106) and argillaceous limestone (GBW07108). The present work provided a new approach to exploit the miniaturized hydride generation dielectric barrier discharge atomic fluorescence spectrometry system for simultaneous multi-element determination.  相似文献   

16.
贮氢电极电化学阻抗谱及其数学模型   总被引:2,自引:0,他引:2  
从分析贮氢电极的放电过程着手,建立了具有明显物理意义贮氢电极电化学阻抗谱的数学模型,以该数学模型为基础,讨论了与电极材料性质和电极荷电状态相联系的一些参数。  相似文献   

17.
The behavior of ammonium ions at amalgam electrodes was studied by cyclic and stripping voltammetry. It was found that the oxidation peak of an ammonium hydride amalgam can be used as the analytical signal. Conditions were selected for the determination of ammonium ions in aqueous solutions at a mercury film electrode by stripping voltammetry using potassium chloride as the supporting electrolyte. The determination limit for ammonium ions was found to be 2 × 10–7M (0.004 mg/L). The procedure was tested in river waters of the Ob' basin and in the atmospheric air.  相似文献   

18.
A mathematical model for the electrochemical impedance spectroscopy of a metal hydride electrode was developed. Ac impedance data of phase transformation were derived by considering a nucleation and growth mechanism based on the theory developed by Johnson–Mehl–Avramy. Different mechanisms such as grain edge and grain boundary preferential nucleation sites are discussed. Global Nyquist plots of the metal hydride electrode are obtained by adding a surface charge transfer reaction and a double-layer capacitance to the model.  相似文献   

19.
Monoamine oxidase (MAO) enzymes regulate the level of neurotransmitters by catalyzing the oxidation of various amine neurotransmitters, such as serotonin, dopamine and norepinephrine. Therefore, they are the important targets for drugs used in the treatment of depression, Parkinson, Alzeimer and other neurodegenerative disorders. Elucidation of MAO-catalyzed amine oxidation will provide new insights into the design of more effective drugs. Various amine oxidation mechanisms have been proposed for MAO so far, such as single electron transfer mechanism, polar nucleophilic mechanism and hydride mechanism. Since amine oxidation reaction of MAO takes place between cofactor flavin and the amine substrate, we focus on the small model structures mimicking flavin and amine substrates so that three model structures were employed. Reactants, transition states and products of the polar nucleophilic (proton transfer), the water-assisted proton transfer and the hydride transfer mechanisms were fully optimized employing various semi-empirical, ab initio and new generation density functional theory (DFT) methods. Activation energy barriers related to these mechanisms revealed that hydride transfer mechanism is more feasible.  相似文献   

20.
利用恒流放电法测定了金属氢化物(MH)电极中氢原子扩散系数的平均值. 通过恒电位法测定了MH电极中氢原子的扩散系数与其荷电态(SOC)的关系. 根据MH电极模型可知, 增大氢原子扩散系数或减小储氢合金粒径均能提高MH电极的快速充电性能, 并能计算出MH电极在不同的初始荷电态、不同充电倍率下, 表面氢原子浓度达到最大值所需的时间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号