首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The geometric structures and infrared (IR) spectra in the electronically excited state of a novel doubly hydrogen‐bonded complex formed by fluorenone and alcohols, which has been observed by IR spectra in experimental study, are investigated by the time‐dependent density functional theory (TDDFT) method. The geometric structures and IR spectra in both ground state and the S1 state of this doubly hydrogen‐bonded FN‐2MeOH complex are calculated using the DFT and TDDFT methods, respectively. Two intermolecular hydrogen bonds are formed between FN and methanol molecules in the doubly hydrogen‐bonded FN‐2MeOH complex. Moreover, the formation of the second intermolecular hydrogen bond can make the first intermolecular hydrogen bond become slightly weak. Furthermore, it is confirmed that the spectral shoulder at around 1700 cm?1 observed in the IR spectra should be assigned as the doubly hydrogen‐bonded FN‐2MeOH complex from our calculated results. The electronic excited‐state hydrogen bonding dynamics is also studied by monitoring some vibraitonal modes related to the formation of hydrogen bonds in different electronic states. As a result, both the two intermolecular hydrogen bonds are significantly strengthened in the S1 state of the doubly hydrogen‐bonded FN‐2MeOH complex. The hydrogen bond strengthening in the electronically excited state is similar to the previous study on the singly hydrogen‐bonded FN‐MeOH complex and play important role on the photophysics of fluorenone in solutions. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

2.
The time-dependent density functional theory (TDDFT) method was performed to investigate the excited-state hydrogen-bonding dynamics of fluorenone (FN) in hydrogen donating methanol (MeOH) solvent. The infrared spectra of the hydrogen-bonded FN-MeOH complex in both the ground state and the electronically excited states are calculated using the TDDFT method, since the ultrafast hydrogen-bonding dynamics can be investigated by monitoring the vibrational absorption spectra of some hydrogen-bonded groups in different electronic states. We demonstrated that the intermolecular hydrogen bond C=O...H-O between fluorenone and methanol molecules is significantly strengthened in the electronically excited-state upon photoexcitation of the hydrogen-bonded FM-MeOH complex. The hydrogen bond strengthening in electronically excited states can be used to explain well all the spectral features of fluorenone chromophore in alcoholic solvents. Furthermore, the radiationless deactivation via internal conversion (IC) can be facilitated by the hydrogen bond strengthening in the excited state. At the same time, quantum yields of the excited-state deactivation via fluorescence are correspondingly decreased. Therefore, the total fluorescence of fluorenone in polar protic solvents can be drastically quenched by hydrogen bonding.  相似文献   

3.
Excited-state hydrogen-bonding dynamics of N-methylformamide (NMF) in water has been investigated by time-dependent density functional theory (TDDFT) method. The ground-state geometry optimizations were calculated by density functional theory (DFT) method, while the electronic transition energies and corresponding oscillation strengths of the low-lying electronically excited states of isolated NMF, water monomers and the hydrogen-bonded NMF-H 2 O were calculated by TDDFT method. According to Zhao's rule on the excited-state hydrogen bonding dynamics, our results demonstrate that the intermolecular hydrogen bond C=O···O-H is strengthened and weakened in different electronically excited states. The hydrogen bond strengthening and weakening in the electronically excited state plays an important role in the photophysics of NMF in solutions.  相似文献   

4.
In the present work, the electronic excited-state hydrogen bonding dynamics of coumarin chromophore in alcohols is revisited. The time-dependent density functional theory (TDDFT) method has been performed to investigate the intermolecular hydrogen bonding between Coumarin 151 (C151) and methanol (MeOH) solvent in the electronic excited state. Three types of intermolecular hydrogen bonds can be formed in the hydrogen-bonded C151–(MeOH)3 complex. We have demonstrated again that intermolecular hydrogen bonds between C151 and methanol molecules can be significantly strengthened upon photoexcitation to the electronically excited state of C151 chromophore. Our results are consistent with the intermolecular hydrogen bond strengthening in the electronically excited state of Coumarin 102 in alcoholic solvents, which has been demonstrated for the first time by Zhao et al. At the same time, the electronic excited-state hydrogen bond cleavage mechanism of photoexcited coumarin chromophores in alcohols proposed in some other studies about the hydrogen bonding dynamics is undoubtedly excluded. Hence, we believe that the two contrary dynamic mechanisms for intermolecular hydrogen bonding in electronically excited states of coumarin chromophores in alcohols are clarified here.  相似文献   

5.
The valence electronic excited states of Fe2(CO)9 have been studied using the time-dependent density functional theory (TDDFT). Both tribridged D3h and monobridged C2v structures have been considered, and the structure of selected low-lying singlet and triplet excited states have been optimized on the basis of the TDDFT analytical gradient. Optimized excited-state geometries are used to obtain an insight into certain aspects of the Fe2(CO)9 photochemistry. The Fe2(CO)9 (D3h) first triplet and second singlet excited states are unbound with respect to dibridged Fe2(CO)8 + CO, and the first two monobridged Fe2(CO)9 (C2v) singlet states are unbound with respect to the Fe(CO)5 + Fe(CO)4 dissociation. These results are discussed in light of the experimental data available.  相似文献   

6.
In this work, the time dependent density functional theory (TDDFT) method was used to investigate the hydrogen bonding dynamics of benzonitrile (PhCN) as hydrogen acceptor in hydrogen donating solvent methanol (MeOH). The ground-state geometry optimizations and the electronic transition energies of the isolated PhCN and MeOH monomers and the two hydrogen-bonded PhCN–MeOH dimers are calculated by the DFT and TDDFT method respectively. According to the results, the hydrogen bond takes the responsibility of the geometric structure change and electronic transfer of the molecules involved. As well, the intermolecular hydrogen-bond C≡N···H–O is strengthened in electronically excited states of the hydrogen-bonded PhCN–MeOHa (planar structure) and PhCN–MeOHb (perpendicular structure) as a result of the lower excitation energy and the electronic spectral redshifts. Despite the different structure, the effects of hydrogen bond on PhCN–MeOHa and PhCN–MeOHb are considered the same, which serves as a proof that geometric structure has little contribution to the structural and energy change in hydrogen-bonded complexes. However, in high-lying singlet states, the structure can cause the divergence of electronic transition rate between the two hydrogen-bonded complexes, even if within the same transition path. What’s more, the extent of hydrogen bond effect on PhCN and MeOH is different between the low-lying excited states and the high-lying excited states.  相似文献   

7.
This work presents a theoretical insight into the variation of the site-specific intermolecular hydrogen-bonding (HB), formed between C=O group of fluorenone (FN) and O?H groups of methanol (MeOL) molecules, induced by both the electronic excitation and the bulk solvent effect. Through the calculation of molecular ground- and excited-state properties, we not only demonstrate the characters of HB strengthening induced by electronic excitation and the bulk solvent effect but also reveal the underlying physical mechanism which leads to the HB variation. The strengthening of the intermolecular HB in electronically excited states and in liquid solution is characterized by the reduced HB bond-lengths and the red-shift IR spectra accompanied by the increasing intensities of IR absorption corresponding to the characteristic vibrational modes of the O-H and C=O stretching. The HB strengthening in the excited electronic states and in solution mainly arises from the charge redistribution of the FN molecule induced by the electronic excitation and bulk solvent instead of the intermolecular charge transfer. The charge redistribution of the solute molecule increases the partial dipole moment of FN molecule and the FN-MeOL intermolecular interaction, which subsequently leads to the HB strengthening. With the bulk solvent effect getting involved, the theoretical IR spectra of HBed FN-MeOL complexes agree much better with the experiments than those of gas-phase FN-MeOL dimer. All the calculations are carried out based on our developed analytical approaches for the first and second energy derivatives of excited electronic state within the time-dependent density functional theory.  相似文献   

8.
9.
In the present work the electronic spectra of [PtCl(4)](2-), [PtBr(4)](2-), and [Pt(CN)(4)](2-) are studied with a recently proposed relativistic time-dependent density-functional theory (TDDFT) based on the two-component zeroth-order regular approximation and a noncollinear exchange-correlation (XC) functional. The contribution to the double group excited states in terms of singlet and triplet single group excited states is estimated through the inner product of the transition density matrix obtained from two-component and scalar relativistic TDDFT calculations to better understand the double group excited states. Spin-orbital coupling effects are found to be very important in order to simulate the electronic spectra of these complexes. The results show that the two-component TDDFT formalism can afford excitation energies with high accuracy for the transition-metal systems studied here when use is made of a proper XC potential.  相似文献   

10.
Time-dependent density functional theory (TDDFT) and femtosecond transient absorption spectroscopy were used to investigate the photophysical properties of 2,3-dihydro-3-keto-1H-pyrido[3,2,1-kl]phenothiazine (PTZ4) and 3-keto-1H-pyrido[3,2,1-kl]phenothiazine (PTZ5). The calculated results obtained from TDDFT suggest that the red-shifts of the absorption spectra of these two fluorophores in methanol are due to the formation of hydrogen-bonded complexes at the ground state. Four conformers of PTZ4 were obtained by TDDFT. The two fluorescence peaks of PTZ4 in tetrahydrofuran (THF) came from the ICT states of the four conformers. The fluorescence of PTZ4 in THF showed a dependence on the excitation wavelength because of butterfly bending. The excited state dynamics of PTZ4 in THF and methanol were obtained by transient absorption spectroscopy. The lifetime of the excited PTZ4 in methanol was 53.8 ps, and its relaxation from the LE state to the ICT state was completed within several picoseconds. The short lifetime of excited PTZ4 in methanol was due to the formation of out-of-plane model hydrogen bonds between PTZ4 and methanol at the excited state.  相似文献   

11.
We report a theoretical study of the multiple oxidation states (1+, 0, 1-, and 2-) of a meso,meso-linked diporphyrin, namely bis[10,15,20-triphenylporphyrinatozinc(II)-5-yl]butadiyne (4), using Time-Dependent Density Functional Theory (TDDFT). The origin of electronic transitions of singlet excited states is discussed in comparison to experimental spectra for the corresponding oxidation states of the close analogue bis[10,15,20-tris[3',5'-di-tert-butylphenyl]porphyrinatozinc(II)-5-yl]butadiyne (3). The latter were measured in previous work under in situ spectroelectrochemical conditions. Excitation energies and orbital compositions of the excited states were obtained for these large delocalized aromatic radicals, which are unique examples of organic mixed-valence systems. The radical cations and anions of butadiyne-bridged diporphyrins such as 3 display characteristic electronic absorption bands in the near-IR region, which have been successfully predicted with use of these computational methods. The radicals are clearly of the "fully delocalized" or Class III type. The key spectral features of the neutral and dianionic states were also reproduced, although due to the large size of these molecules, quantitative agreement of energies with observations is not as good in the blue end of the visible region. The TDDFT calculations are largely in accord with a previous empirical model for the spectra, which was based simplistically on one-electron transitions among the eight key frontier orbitals of the C4 (1,4-butadiyne) linked diporphyrins.  相似文献   

12.
13.
The photophysics of the S2 and S1 excited states of zinc porphyrin (ZnP) and five of its derivatives (ZnOEP, ZnTBP, ZnTPP, ZnTFPP, ZnTCl8PP) have been investigated by measuring their steady-state absorption and fluorescence spectra, quantum yields and excited state lifetimes at room temperature in several solvents. The radiative and radiationless decay constants of the fluorescent excited states accessible in the visible and near UV regions of the spectrum have been obtained. Despite the similarities in the Soret spectra of these compounds, their S2 excited state radiationless decay rates differ markedly. Although the S2-S1 electronic energies of a given zinc porphyrin vary linearly with the Lippert (refractive index) function of the solvent, the S2 radiationless decay rates of the set of compounds do not follow the energy gap law of radiationless transition theory. Calculations, using time-dependent density functional theory (TDDFT), of the energies and symmetries of the complete set of excited states accessible by 1- or 2-photon absorption in the near UV-visible have also been carried out. Substitution on the porphyrin macrocycle framework affects the ground state geometry and alters the electron density distributions, the orbital energies and the relative order of the excited electronic states accessible in the near UV-blue regions of the spectrum. The results are used to help interpret both the nature of the electronic transitions in the Soret region, and the relative magnitudes of the radiationless transition rates of the excited states involved.  相似文献   

14.
15.
The electronic transitions occurring in 4-(N,N-dimethylamino)-3-hydroxyflavone (DMAF) and 2-furanyl-3-hydroxychromone (FHC) were investigated using the TDDFT method in aprotic and protic solvents. The solvent effect was incorporated into the calculations via the PCM formalism. The H-bonding between solute and protic solvent was taken into account by considering a molecular complex between these molecules. To examine the effect of the H-bond on the ESIPT reaction, the absorption and emission wavelengths as well as the energies of the different states that intervene during these electronic transitions were calculated in acetonitrile, ethanol and methanol. The calculated positions of the absorption and emission wavelengths in various solvents were in excellent agreement with the experimental spectra, validating our approach. We found that in DMAF, the hydrogen bonding with protic solvents makes the ESIPT reaction energetically unfavourable, which explains the absence of the ESIPT tautomer emission in protic solvents. In contrast, the excited tautomer state of FHC remains energetically favourable in both aprotic and protic solvents. Comparing our calculations with the previously reported time-resolved fluorescence data, the ESIPT reaction of DMAF in aprotic solvents is reversible because the emitting states are energetically close, whereas in FHC, ESIPT is irreversible because the tautomer state is below the corresponding normal state. Therefore, the ESIPT reaction in DMAF is controlled by the relative energies of the excited states (thermodynamic control), while in FHC the ESIPT is controlled probably by the energetic barrier (kinetic control).  相似文献   

16.
Time-dependent density functional theory (TDDFT) method has been carried out to investigate excited-state hydrogen-bonding dynamics between 2-hydroxybenzonitrile (o-cyanophenol) and carbon monoxide. We have demonstrated that intermolecular hydrogen bond between 2-hydroxybenzonitrile (o-cyanophenol) and C=O group are significantly strengthened in the electronically excited state by theoretically monitoring the changes of the bond lengths of hydrogen bonds and hydrogen-bonding groups in different electronic states. In this study, we firstly analyze frontier molecular orbitals (MOs). Our results are consistent with the intermolecular hydrogen bond strengthening in the electronically excited state of Coumarin 102 in alcoholic solvents, which has been demonstrated for the first time by Zhao and Han. Moreover, the calculated electronic excitation energies of the hydrogen bonding C=O and O–H groups are markedly red-shifted upon photoexcitation, which illustrates the hydrogen bonds strengthen in the electronically excited state again. And the geometric structures in both ground state and the S1 state of this hydrogen-bonded complex are calculated using the density functional theory (DFT) and TDDFT methods, respectively.  相似文献   

17.
The structural and electronic properties of two heteroleptic iridium complexes Ir(dfppy)2(pic) (FIrpic) and Ir(dfppy)2(acac) (FIracac) have been investigated theoretically, where dfppy = 2-(2,4-difluorophenyl) pyridine, pic = picolinic acid, and acac = acetoylacetonate. The geometries of ground and excited states are optimized at PBE0/LANL2DZ and CIS/LANL2DZ levels, respectively. Time-dependent density functional theory (TDDFT) method is employed to explore the absorption and emission properties. In the ground state, the highest-occupied molecular orbital has a significant mixture of metal Ir(d) and dfppy(pi), the lowest-unoccupied orbital locates primarily on pi* of pic for FIrpic and pi* of dfppy for FIracac. The luminescence of each complex originates from the lowest triplet excited state, which is assigned to the mixing of metal-to-ligand charge transfer and intraligand charge transfer characters. The effects of ancillary ligands pic and acac on absorption and emission spectra are observed by analysis of TDDFT results. The connection between the nature of excited states and the behavior of the complexes with different ancillary ligands is elucidated.  相似文献   

18.
A combined theoretical and experimental study of the structure, optical, and photophysical properties of four 2,7-carbazolenevinylene-based derivatives in solution is presented. Geometry optimizations of the ground states of PCP, PCP-CN, TCT, and TCT-CN were carried out using the density functional theory (DFT/B3LYP/6-31G*). It is found that PCP and TCT are nearly planar in their ground electronic states (S0), whereas the cyano derivatives are more twisted. The nature and the energy of the first singlet-singlet electronic transitions have been obtained from time-dependent density functional theory (TDDFT) calculations performed on the optimized geometries. For all the compounds, excitation to the S1 state corresponds mainly to the promotion of one electron from the highest-occupied molecular orbital to the lowest-unoccupied molecular orbital, and the S1 <-- S0 electronic transition is strongly allowed and polarized along the long axis of the molecular frame. The optimization (relaxation) of the first singlet excited electronic state (S1) has been done using the restricted configuration interaction (singles) (RCIS/6-31G*) approach. It is observed that all four investigated compounds become more planar in their S1 relaxed excited state. Electronic transition energies from the relaxed excited states have been obtained from TDDFT calculations performed on the S1-optimized geometries. The absorption and fluorescence spectra of the carbazolenevinylenes have been recorded in chloroform. A good agreement is obtained between TDDFT vertical transitions energies and the (0,0) absorption and fluorescence bands. The change from phenylene to thiophene rings as well as the incorporation of cyano substituents induce bathochromic shifts in the absorption and fluorescence spectra. From the analysis of the energy of the frontier molecular orbitals, it is believed that thiophene rings and CN substituents induce some charge-transfer character to the first electronic transition, which is responsible for the red shifts observed. Finally, the fluorescence quantum yield and the lifetime of the compounds in chloroform have been obtained. In sharp contrast with many oligothiophenes, it is observed that TCT possesses a high fluorescence quantum yield. On the other hand, the CN-containing derivatives exhibit much lower fluorescence quantum yields, probably due to the combined influence of steric effects and charge-transfer interactions caused by the cyano groups.  相似文献   

19.
Reported experimental evidence of the relative position of the first two excited electronic states in linear polyenes was carefully examined and compared with that derived from time dependent density functional theory (TDDFT) theoretical calculations performed at the B3LYP level on optimized geometries. The energy values for the first two triplet states 3Bu and 3Ag, obtained from TDDFT calculations, were found to be highly strongly correlated with the experimental values. Also, the theoretical calculations for the electronic transition 1 1Ag --> 1 1Bu were also extremely well correlated with their experimental counterparts; even more important, the three reported experimental data for 1 1Ag --> 2 1Ag transitions in these systems conformed to the correlation for the TDDFT 1 1Ag --> 1 1Bu transition. The first excited electronic state in the linear polyenes studied (from ethene to the compound consisting of 40 ethene units, P40) was found to be 1Bu. The energy gap between the excited states 2 1Ag and 1 1Bu decreased with increasing length of the polyene chain, but not to the extent required to cause inversion, at least up to P40. In the all-trans linear polyenes studied, the widely analyzed energy gap from the ground electronic state to the first excited singlet state for infinitely long chains may be meaningless as, even in P40, it is uncertain whether the ground electronic state continues to be a singlet.  相似文献   

20.
The excited states of the phenylene ethynylene dendrimer are investigated comprehensively by various electronic‐structure methods. Several computational methods, including SCS‐ADC(2), TDHF, TDDFT with different functionals (B3LYP, BH&HLYP, CAM‐B3LYP), and DFT/MRCI, are applied in systematic calculations. The theoretical approach based on the one‐electron transition density matrix is used to understand the electronic characters of excited states, particularly the contributions of local excitations and charge‐transfer excitations within all interacting conjugated branches. Furthermore, the potential energy curves of low‐lying electronic states as the functions of ethynylene bonds are constructed at different theoretical levels. This work provides us theoretical insights on the intramolecular excited‐state energy transfer mechanism of the dendrimers at the state‐of‐the‐art electronic‐structure theories. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号