首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sivakumar  K. C.  Tsatsomeros  M. J. 《Positivity》2018,22(1):379-398

The semipositive cone of \(A\in \mathbb {R}^{m\times n}, K_A = \{x\ge 0\,:\, Ax\ge 0\}\), is considered mainly under the assumption that for some \(x\in K_A, Ax>0\), namely, that A is a semipositive matrix. The duality of \(K_A\) is studied and it is shown that \(K_A\) is a proper polyhedral cone. The relation among semipositivity cones of two matrices is examined via generalized inverse positivity. Perturbations and intervals of semipositive matrices are discussed. Connections with certain matrix classes pertinent to linear complementarity theory are also studied.

  相似文献   

2.
Square matrices with positive leading principal minors, called WHS-matrices (weak Hawkins–Simon), are considered in economics. Some sufficient conditions for a matrix to be a WHS-matrix after suitable row and/or column permutations have recently appeared in the literature. New and unified proofs and generalizations of some results to rectangular matrices are given. In particular, it is shown that if left multiplication of a rectangular matrix A by some nonnegative matrix is upper triangular with positive diagonal, then some row pemutation of A is a WHS-matrix. For a nonsingular A with either the first nonzero entry of each of its rows positive or the last nonzero entry of each column of A ?1 positive, again some row permutation of A is a WHS-matrix. In addition, any rectangular full rank semipositive matrix is shown to be permutation equivalent to a WHS-matrix.  相似文献   

3.
The linear algebraic equation Ax = b with tridiagonal coefficient matrix of A is solved by the analytical matrix inversion. An explicit formula is known if A is a Toeplitz matrix. New formulas are presented for the following cases: (1) A is of Toeplitz type except that A(1, 1) and A(n, n) are different from the remaining diagonal elements. (2) A is p-periodic (p > 1), by which is meant that in each of the three bands of A a group of p elements is periodically repeated. (3) The tridiagonal matrix A is composed of periodic submatrices of different periods. In cases (2) and(3) the problem of matrix inversion is reduced to a second-order difference equation with periodic coefficients. The solution is based on Floquet's theorem. It is shown that for p = 1 the formulae found for periodic matrices reduce to special forms valid for Toeplitz matrices. The results are applied to problems of elastostatics and of vibration theory.  相似文献   

4.
Suppose that p(XY) = A − BX − X(∗)B(∗) − CYC(∗) and q(XY) = A − BX + X(∗)B(∗) − CYC(∗) are quaternion matrix expressions, where A is persymmetric or perskew-symmetric. We in this paper derive the minimal rank formula of p(XY) with respect to pair of matrices X and Y = Y(∗), and the minimal rank formula of q(XY) with respect to pair of matrices X and Y = −Y(∗). As applications, we establish some necessary and sufficient conditions for the existence of the general (persymmetric or perskew-symmetric) solutions to some well-known linear quaternion matrix equations. The expressions are also given for the corresponding general solutions of the matrix equations when the solvability conditions are satisfied. At the same time, some useful consequences are also developed.  相似文献   

5.
Let F(A) be the numerical range or the numerical radius of a square matrix A. Denote by A ° B the Schur product of two matrices A and B. Characterizations are given for mappings on square matrices satisfying F(A ° B) = F(?(A) ° ?(B)) for all matrices A and B. Analogous results are obtained for mappings on Hermitian matrices.  相似文献   

6.
Let b = b(A) be the Boolean rank of an n × n primitive Boolean matrix A and exp(A) be the exponent of A. Then exp(A) ? (b − 1)2 + 2, and the matrices for which equality occurs have been determined in [D.A. Gregory, S.J. Kirkland, N.J. Pullman, A bound on the exponent of a primitive matrix using Boolean rank, Linear Algebra Appl. 217 (1995) 101-116]. In this paper, we show that for each 3 ? b ? n − 1, there are n × n primitive Boolean matrices A with b(A) = b such that exp(A) = (b − 1)2 + 1, and we explicitly describe all such matrices.  相似文献   

7.
In this paper, the nonlinear matrix equation X + AXqA = Q (q > 0) is investigated. Some necessary and sufficient conditions for existence of Hermitian positive definite solutions of the nonlinear matrix equations are derived. An effective iterative method to obtain the positive definite solution is presented. Some numerical results are given to illustrate the effectiveness of the iterative methods.  相似文献   

8.
A sign pattern matrix is a matrix whose entries are from the set {+,-,0}. For a real matrix B, sgn(B) is the sign pattern matrix obtained by replacing each positive (respectively, negative, zero) entry of B by + (respectively, −, 0). For a sign pattern matrix A, the sign pattern class of A, denoted Q(A), is defined as {B:sgn(B)=A}. The minimum rank mr(A) (maximum rank MR(A)) of a sign pattern matrix A is the minimum (maximum) of the ranks of the real matrices in Q(A). Several results concerning sign patterns A that require almost unique rank, that is to say, the sign patterns A such that MR(A) = mr(A) + 1, are established and are extended to sign patterns A for which the spread is d=MR(A)-mr(A). A complete characterization of the sign patterns that require almost unique rank is obtained.  相似文献   

9.
By employing a generalized Riccati technique and an integral averaging technique, new oscillation criteria are established for the linear matrix Hamiltonian system U′=A(x)U+B(x)V, V′=C(x)U−A∗(x)V under the assumption that all A(x), B(x)=B∗(x)>0, and C(x)=C∗(x) are n×n matrices of real-valued continuous functions on the interval I=[x0,∞) (−∞<x0). These criteria extend, improve, and unify a number of existing results and also handle cases not covered by known criteria. Several interesting examples that illustrate the importance of our results are included.  相似文献   

10.
A 0–1 matrix A is said to avoid a forbidden 0–1 matrix (or pattern) P if no submatrix of A matches P, where a 0 in P matches either 0 or 1 in A. The theory of forbidden matrices subsumes many extremal problems in combinatorics and graph theory such as bounding the length of Davenport–Schinzel sequences and their generalizations, Stanley and Wilf’s permutation avoidance problem, and Turán-type subgraph avoidance problems. In addition, forbidden matrix theory has proved to be a powerful tool in discrete geometry and the analysis of both geometric and non-geometric algorithms.Clearly a 0–1 matrix can be interpreted as the incidence matrix of a bipartite graph in which vertices on each side of the partition are ordered. Füredi and Hajnal conjectured that if P corresponds to an acyclic graph then the maximum weight (number of 1s) in an n×n matrix avoiding P is O(nlogn). In the first part of the article we refute of this conjecture. We exhibit n×n matrices with weight Θ(nlognloglogn) that avoid a relatively small acyclic matrix. The matrices are constructed via two complementary composition operations for 0–1 matrices. In the second part of the article we simplify one aspect of Keszegh and Geneson’s proof that there are infinitely many minimal nonlinear forbidden 0–1 matrices. In the last part of the article we investigate the relationship between 0–1 matrices and generalized Davenport–Schinzel sequences. We prove that all forbidden subsequences formed by concatenating two permutations have a linear extremal function.  相似文献   

11.
Let M(A) denote the comparison matrix of a square H-matrix A, that is, M(A) is an M-matrix. H-matrices such that their comparison matrices are nonsingular are well studied in the literature. In this paper, we study characterizations of H-matrices with either singular or nonsingular comparison matrices. The spectral radius of the Jacobi matrix of M(A) and the generalized diagonal dominance property are used in the characterizations. Finally, a classification of the set of general H-matrices is obtained.  相似文献   

12.
Let A, B be two matrices of the same order. We write A>B(A>?B) iff A? B is a positive (semi-) definite hermitian matrix. In this paper the well-known result if
A>B>θ, then B?1>A?1> θ
(cf. Bellman [1, p.59]) is extended to the generalized inverses of certain types of pairs of singular matrices A,B?θ, where θ denotes the zero matrix of appropriate order.  相似文献   

13.
In a recent paper, Neumann and Sze considered for an n × n nonnegative matrix A, the minimization and maximization of ρ(A + S), the spectral radius of (A + S), as S ranges over all the doubly stochastic matrices. They showed that both extremal values are always attained at an n × n permutation matrix. As a permutation matrix is a particular case of a normal matrix whose spectral radius is 1, we consider here, for positive matrices A such that (A + N) is a nonnegative matrix, for all normal matrices N whose spectral radius is 1, the minimization and maximization problems of ρ(A + N) as N ranges over all such matrices. We show that the extremal values always occur at an n × n real unitary matrix. We compare our results with a less recent work of Han, Neumann, and Tastsomeros in which the maximum value of ρ(A + X) over all n × n real matrices X of Frobenius norm was sought.  相似文献   

14.
An analytical function f(A) of an arbitrary n×n constant matrix A is determined and expressed by the “fundamental formula”, the linear combination of constituent matrices. The constituent matrices Zkh, which depend on A but not on the function f(s), are computed from the given matrix A, that may have repeated eigenvalues. The associated companion matrix C and Jordan matrix J are then expressed when all the eigenvalues with multiplicities are known. Several other related matrices, such as Vandermonde matrix V, modal matrix W, Krylov matrix K and their inverses, are also derived and depicted as in a 2-D or 3-D mapping diagram. The constituent matrices Zkh of A are thus obtained by these matrices through similarity matrix transformations. Alternatively, efficient and direct approaches for Zkh can be found by the linear combination of matrices, that may be further simplified by writing them in “super column matrix” forms. Finally, a typical example is provided to show the merit of several approaches for the constituent matrices of a given matrix A.  相似文献   

15.
Explicit algebraic formulas for the polar decomposition of a nonsingular real 2×2 matrix A are given, as well as a classification of all integer 2×2 matrices that admit a rational polar decomposition. These formulas lead to a functional identity which is satisfied by all nonsingular real 2×2 matrices A as well as by exactly one type of exceptional matrix An for each n>2.  相似文献   

16.
In this paper we will give necessary and sufficient conditions under which a map is a contraction on a certain subset of a normed linear space. These conditions are already well known for maps on intervals in R. Using the conditions and Banach’s fixed point theorem we can prove a fixed point theorem for operators on a normed linear space. The fixed point theorem will be applied to the matrix equation X = In + Af(X)A, where f is a map on the set of positive definite matrices induced by a real valued map on (0, ∞). This will give conditions on A and f under which the equation has a unique solution in a certain set. We will consider two examples of f in detail. In one example the application of the fixed point theorem is the first step in proving that the equation has a unique positive definite solution under the conditions on A.  相似文献   

17.
For a simple graph G on n vertices, the minimum rank of G over a field F, written as mrF(G), is defined to be the smallest possible rank among all n×n symmetric matrices over F whose (i,j)th entry (for ij) is nonzero whenever {i,j} is an edge in G and is zero otherwise. A symmetric integer matrix A such that every off-diagonal entry is 0, 1, or -1 is called a universally optimal matrix if, for all fields F, the rank of A over F is the minimum rank of the graph of A over F. Recently, Dealba et al. [L.M. Dealba, J. Grout, L. Hogben, R. Mikkelson, K. Rasmussen, Universally optimal matrices and field independence of the minimum rank of a graph, Electron. J. Linear Algebra 18 (2009) 403-419] initiated the study of universally optimal matrices and established field independence or dependence of minimum rank for some families of graphs. In the present paper, more results on universally optimal matrices and field independence or dependence of the minimum rank of a graph are presented, and some results of Dealba et al. [5] are improved.  相似文献   

18.
The concepts of matrix monotonicity, generalized inverse-positivity and splittings are investigated and are used to characterize the class of all M-matrices A, extending the well-known property that A?1?0 whenever A is nonsingular. These conditions are grouped into classes in order to identify those that are equivalent for arbitrary real matrices A. It is shown how the nonnegativity of a generalized left inverse of A plays a fundamental role in such characterizations, thereby extending recent work by one of the authors, by Meyer and Stadelmaier and by Rothblum. In addition, new characterizations are provided for the class of M-matrices with “property c”; that is, matrices A having a representation A=sI?B, s>0, B?0, where the powers of (1s)B converge. Applications of these results to the study of iterative methods for solving arbitrary systems of linear equations are given elsewhere.  相似文献   

19.
We consider the system $$ \dot x = A\left( \cdot \right)x + B\left( \cdot \right)u, u = S\left( \cdot \right)x, t \geqslant t_0 , $$ where A(·) ∈ ? n×n , B(·) ? n×p , and S(·) ∈ ? p×n . The entries of matrices A(·), B(·), and S(·) are arbitrary bounded functionals. We consider the problem of constructing a matrix H > 0 and finding relations between the entries of the matrices B(·) and S(·) such that for a given constant matrix R the inequality $$ V\left( {x\left( t \right)} \right) < V\left( {x\left( {t_0 } \right)} \right) + \int\limits_{t_0 }^t {x*\left( \tau \right)Rx\left( \tau \right)d\tau ,} $$ where V(x) = x*Hx, is satisfied. This problem is solved for the cases where matrix A(·) has p sign-definite entries on the upper part of some subdiagonal or on the lower part of some superdiagonal. It is assumed also that all entries located to the left (or to the right) of the sign-definite entries are equal to zero.  相似文献   

20.
In this paper, we extend the concept of the measure of a matrix to encompass a measure induced by an arbitrary convex positive definite function. It is shown that this “modified” matrix measure has most of the properties of the usual matrix measure, and that many of the known applications of the usual matrix measure can therefore be carried over to the modified matrix measure. These applications include deriving conditions for a mapping to be a diffeomorphism on Rn, and estimating the solution errors that result when a nonlinear network is approximated by a piecewise linear network. We also develop a connection between matrix measures and Liapunov functions. Specifically, we show that if V is a convex positive definite function and A is a Hurwitz matrix, then μV(A) < 0, if and only if V is a Liapunov function for the system x? = Ax. This linking up between matrix measures and Liapunov functions leads to some results on the existence of a “common” matrix measure μV(·) such that μV(Ai) < 0 for each of a given set of matrices A1,…, Am. Finally, we also give some results for matrices with nonnegative off-diagonal terms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号