首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
本文考虑的问题是二维粘性渠流。对0到2000之间的雷诺数,计算了平稳扰动的Couette-Poiseuille流的下游特征值,其特征方程类似于Orr-Sommerfeld方程。所用的方法是谱方法和初值方法(复合矩阵方法).就几种有趣的流量,给出了相应的特征值的计算结果。这些特征值确定了扰动的衰减率。  相似文献   

2.
本文提出了对粘性阻尼线性振动系统的复模态二次广义特征值问题进行高效近似求解的一种新的矩阵摄动分析方法,即先将阻尼矩阵分解为比例阻尼部分和非比例阻尼部分之和,并求得系统的比例阻尼实模态特征解;然后以此为初始值,将阻尼矩阵的非比例部分作为对其比例部分的小量修改,利用摄动分析方法简捷地得到系统的复模态特征值问题的近似解.这一新方法适用于振系阻尼分布不十分偏离比例阻尼情况的问题,因此对大阻尼(非过阻尼)振动系统也有效.这是它优于以前提出的基于无阻尼实模态特征解的类似摄动分析方法的重要特点.文中建立了复模态特征值和特征向量的二阶摄动解式,并通过算例证实了其有效性.此外还讨论了利用比例阻尼假定估计阻尼系统固有振动的复特征值的可行性.  相似文献   

3.
Certain properties of the nonlinear self-adjoint eigenvalue problem for Hamiltonian systems of ordinary differential equations with singularities are examined. Under certain assumptions on the way in which the matrix of the system and the matrix specifying the boundary condition at a regular point depend on the spectral parameter, a numerical method is proposed for determining the number of eigenvalues lying on a prescribed interval of the spectral parameter.  相似文献   

4.
Within the set of discrete-time Markov chains, a Markov chain is embeddable in case its transition matrix has at least one root that is a stochastic matrix. The present paper examines the embedding problem for discrete-time Markov chains with three states and with real eigenvalues. Sufficient embedding conditions are proved for diagonalizable transition matrices as well as for non-diagonalizable transition matrices and for all possible configurations regarding the sign of the eigenvalues. The embedding conditions are formulated in terms of the projections and the spectral decomposition of the transition matrix.  相似文献   

5.
In this work a nonlinear eigenvalue problem for a nonlinear autonomous ordinary differential equation of the second order is considered. This problem describes the process of propagation of transverse-electric electromagnetic waves along a plane dielectric waveguide with nonlinear permittivity. We demonstrate, as far as we know, a new method that allows one to derive an equation w.r.t. spectral parameter (the dispersion equation) which contains all necessary information about the eigenvalues. The method is based on a simple idea that the distance between zeros of a periodic solution to the differential equation is the same for the adjacent zeros. This method has no connections with the perturbation theory or the notion of a bifurcation point. Theorem of equivalence between the eigenvalue problem and the dispersion equation is proved. Periodicity of the eigenfunctions is proved, a formula for the period is found, and zeros of the eigenfunctions are determined. The formula for the distance between adjacent zeros of any eigenfunction is given. Also theorems of existence and localization of the eigenvalues are proved.  相似文献   

6.
In this paper,we describe how to construct a real anti-symmetric(2p-1)-band matrix with prescribed eigenvalues in its ρ leading principal submatrices.This is done in two steps.First,an anti-symmetric matrix B is constructed with the specified spectral data but not necessary a band matrix.Then B is transformed by Householder transformations to a (2ρ-1)-band matrix with the prescribed eigenvalues.An algorithm is presented.Numerical results are presented to demonstrate that the proposed method is effective.  相似文献   

7.
We use the reduction method, which allows one to reduce the study of perturbations of multiple eigenvalues to perturbations of simple eigenvalues, to analyze the general perturbation problem for Fredholm points of the discrete spectrum of linear operator functions analytically depending on the spectral parameter. The same method is used to study a perturbation of multiple Fredholm points of the discrete Schmidt spectrum (s-numbers) of a linear operator. We present an example of a problem on a perturbation of the domain of the Sturm–Liouville problem for a second-order differential operator.  相似文献   

8.
We consider the problem of how to compute eigenvalues of a self-adjoint operator when a direct application of the Galerkin (finite-section) method is unreliable. The last two decades have seen the development of the so-called quadratic methods for addressing this problem. Recently a new perturbation approach has emerged, the idea being to perturb eigenvalues off the real line and, consequently, away from regions where the Galerkin method fails. We propose a simplified perturbation method which requires no á priori information and for which we provide a rigorous convergence analysis. The latter shows that, in general, our approach will significantly outperform the quadratic methods. We also present a new spectral enclosure for operators of the form AiB where A is self-adjoint, B is self-adjoint and bounded. This enables us to control, very precisely, how eigenvalues are perturbed from the real line. The main results are demonstrated with examples including magnetohydrodynamics, Schrödinger and Dirac operators.  相似文献   

9.
The asymptotic formulae for the eigenvalues and eigenfunctions of Sturm-Liouville problem with the Dirichlet boundary conditions when the potential is square integrable on [0, 1] are obtained by using homotopy perturbation method.  相似文献   

10.
Given an affine subspace of square matrices, we consider the problem of minimizing the spectral abscissa (the largest real part of an eigenvalue). We give an example whose optimal solution has Jordan form consisting of a single Jordan block, and we show, using nonlipschitz variational analysis, that this behaviour persists under arbitrary small perturbations to the example. Thus although matrices with nontrivial Jordan structure are rare in the space of all matrices, they appear naturally in spectral abscissa minimization.

  相似文献   


11.
We propose an algorithm for the recovery of a potential from the knowledge of the eigenvalues of the Laplacian operator and the traces of its eigenfunctions. This inverse spectral problem is solved by recasting the operator as an infinite matrix and using transition matrices together with spectral projections on the boundary.  相似文献   

12.
Abstract. We consider the problem of minimizing over an affine set of square matrices the maximum of the real parts of the eigenvalues. Such problems are prototypical in robust control and stability analysis. Under nondegeneracy conditions, we show that the multiplicities of the active eigenvalues at a critical matrix remain unchanged under small perturbations of the problem. Furthermore, each distinct active eigenvalue corresponds to a single Jordan block. This behavior is crucial for optimality conditions and numerical methods. Our techniques blend nonsmooth optimization and matrix analysis.  相似文献   

13.
In this paper, using spectral differentiation matrix and an elimination treatment of boundary conditions, Sturm-Liouville problems (SLPs) are discretized into standard matrix eigenvalue problems. The eigenvalues of the original Sturm-Liouville operator are approximated by the eigenvalues of the corresponding Chebyshev differentiation matrix (CDM). This greatly improves the efficiency of the classical Chebyshev collocation method for SLPs, where a determinant or a generalized matrix eigenvalue problem has to be computed. Furthermore, the state-of-the-art spectral method, which incorporates the barycentric rational interpolation with a conformal map, is used to solve regular SLPs. A much more accurate mapped barycentric Chebyshev differentiation matrix (MBCDM) is obtained to approximate the Sturm-Liouville operator. Compared with many other existing methods, the MBCDM method achieves higher accuracy and efficiency, i.e., it produces fewer outliers. When a large number of eigenvalues need to be computed, the MBCDM method is very competitive. Hundreds of eigenvalues up to more than ten digits accuracy can be computed in several seconds on a personal computer.  相似文献   

14.
In this paper, the partial eigenvalue assignment problem for undamped structural systems by output feedback control where the output matrix is also a designing parameter is considered. We propose a method to solve this problem in which the unwanted eigenvalues are move to desired values and all other eigenpairs remain unchanged. In addition, our method can preserve symmetry of the systems. Numerical example shows that the proposed method is effective.  相似文献   

15.
The two-dimensional spectral inverse problem involves the reconstruction of an unknown coefficient in an elliptic partial differential equation from spectral data, such as eigenvalues. Projection of the boundary value problem and the unknown coefficient onto appropriate vector spaces leads to a matrix inverse problem. Unique solutions of this matrix inverse problem exist provided that the eigenvalue data is close to the eigenvalues associated with the analogous constant coefficient boundary value problem. We discuss here the application of such a technique to the reconstruction of an impedance p in the boundary value problem $$ \eqalign{ -\nabla (\,p \nabla u) = \lambda p u \hbox {\quad in R} \cr u = 0 \hbox {\quad on R}}$$ where R is a rectangular domain. The matrix inverse problem, although nonstandard, is solved by a fixed-point iterative method and an impedance function p * is constructed which has the same m lowest eigenvalues as the unknown p . Numerical evidence of the success of the method will be presented.  相似文献   

16.
A nonlinear eigenvalue problem related to determining the stress and strain fields near the tip of a transverse crack in a power-law material is studied. The eigenvalues are found by a perturbation method based on representations of an eigenvalue, the corresponding eigenfunction, and the material nonlinearity parameter in the form of series expansions in powers of a small parameter equal to the difference between the eigenvalues in the linear and nonlinear problems. The resulting eigenvalues are compared with the accurate numerical solution of the nonlinear eigenvalue problem.  相似文献   

17.
We study the eigenvalues of a matrix A perturbed by a few special low-rank matrices. The perturbation is constructed from certain basis vectors of an invariant subspace of A, such as eigenvectors, Jordan vectors, or Schur vectors. We show that most of the eigenvalues of the low-rank perturbed matrix stayed unchanged from the eigenvalues of A; the perturbation can only change the eigenvalues of A that are related to the invariant subspace. Existing results mostly studied using eigenvectors with full column rank for perturbations, we generalize the results to more general settings. Applications of our results to a few interesting problems including the Google’s second eigenvalue problem are presented.  相似文献   

18.
We suggest a method for determining the number of an eigenvalue of a self-adjoint spectral problem nonlinear with respect to the spectral parameter, for some class of Hamiltonian systems of ordinary differential equations on the half-line. The standard boundary conditions are posed at zero, and the solution boundedness condition is posed at infinity. We assume that the matrix of the system is monotone with respect to the spectral parameter. The number of an eigenvalue is determined by the properties of the corresponding nontrivially solvable homogeneous boundary value problem. For the considered class of systems, it becomes possible to compute the numbers of eigenvalues lying in a given range of the spectral parameter without finding the eigenvalues themselves.  相似文献   

19.
AN INVERSE EIGENVALUE PROBLEM FOR JACOBI MATRICES   总被引:7,自引:0,他引:7  
Let T1,n be an n x n unreduced symmetric tridiagonal matrix with eigenvaluesand is an (n - 1) x (n - 1) submatrix by deleting the kth row and kth column, k = 1, 2,be the eigenvalues of T1,k andbe the eigenvalues of Tk+1,nA new inverse eigenvalues problem has put forward as follows: How do we construct anunreduced symmetric tridiagonal matrix T1,n, if we only know the spectral data: theeigenvalues of T1,n, the eigenvalues of Ti,k-1 and the eigenvalues of Tk+1,n?Namely if we only know the data: A1, A2, An,how do we find the matrix T1,n? A necessary and sufficient condition and an algorithm ofsolving such problem, are given in this paper.  相似文献   

20.
In this paper we construct the symmetric quasi anti-bidiagonal matrix that its eigenvalues are given, and show that the problem is also equivalent to the inverse eigenvalue problem for a certain symmetric tridiagonal matrix which has the same eigenvalues. Not only elements of the tridiagonal matrix come from quasi anti-bidiagonal matrix, but also the places of elements exchange based on some conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号