共查询到20条相似文献,搜索用时 0 毫秒
1.
A generalized Bethe tree is a rooted tree in which vertices at the same distance from the root have the same degree. Let Pm be a path of m vertices. Let {Bi:1?i?m} be a set of generalized Bethe trees. Let Pm{Bi:1?i?m} be the tree obtained from Pm and the trees B1,B2,…,Bm by identifying the root vertex of Bi with the i-th vertex of Pm. We give a complete characterization of the eigenvalues of the Laplacian and adjacency matrices of Pm{Bi:1?i?m}. In particular, we characterize their spectral radii and the algebraic conectivity. Moreover, we derive results concerning their multiplicities. Finally, we apply the results to the case B1=B2=…=Bm. 相似文献
2.
Oscar Rojo 《Linear algebra and its applications》2011,435(8):2077-2086
The energy of a graph G is the sum of the absolute values of the eigenvalues of the adjacency matrix of G. A caterpillar is a tree in which the removal of all pendant vertices makes it a path. Let d?3 and n?2(d-1). Let p=[p1,p2,…,pd-1] with p1?1,p2?1,…,pd-1?1 such that
p1+p2+?+pd-1=n-d+1. 相似文献
3.
A Bethe tree Bd,k is a rooted unweighted of k levels in which the root vertex has degree equal to d, the vertices at level j(2?j?k-1) have degree equal to (d+1) and the vertices at level k are the pendant vertices. In this paper, we first derive an explicit formula for the eigenvalues of the adjacency matrix of Bd,k. Moreover, we give the corresponding multiplicities. Next, we derive an explicit formula for the simple nonzero eigenvalues, among them the largest eigenvalue, of the Laplacian matrix of Bd,k. Finally, we obtain upper bounds on the largest eigenvalue of the adjacency matrix and of the Laplacian matrix of any tree T. These upper bounds are given in terms of the largest vertex degree and the radius of T, and they are attained if and only if T is a Bethe tree. 相似文献
4.
Oscar Rojo 《Linear algebra and its applications》2006,414(1):218-243
Let T be an unweighted tree with vertex root v which is the union of two trees T1=(V1,E1), T2=(V2,E2) such that V1 ∩ V2 = {v} and T1 and T2 have the property that the vertices in each of their levels have equal degree. We characterize completely the eigenvalues of the adjacency matrix and of the Laplacian matrix of T. They are the eigenvalues of symmetric tridiagonal matrices whose entries are given in terms of the vertex degrees. Moreover, we give some results about the multiplicity of the eigenvalues. Applications to some particular trees are developed. 相似文献
5.
Nair Abreu Domingos M. Cardoso Ivan Gutman Enide A. Martins Mar?´a Robbiano 《Linear algebra and its applications》2011,435(10):2365-2374
The energy of a graph G is the sum of the absolute values of the eigenvalues of the adjacency matrix of G. The Laplacian (respectively, the signless Laplacian) energy of G is the sum of the absolute values of the differences between the eigenvalues of the Laplacian (respectively, signless Laplacian) matrix and the arithmetic mean of the vertex degrees of the graph. In this paper, among some results which relate these energies, we point out some bounds to them using the energy of the line graph of G. Most of these bounds are valid for both energies, Laplacian and signless Laplacian. However, we present two new upper bounds on the signless Laplacian which are not upper bounds for the Laplacian energy. 相似文献
6.
Bojan Mohar 《Linear algebra and its applications》2010,432(9):2273-2467
Wilf’s eigenvalue upper bound on the chromatic number is extended to the setting of digraphs. The proof uses a generalization of Brooks’ Theorem to digraph colorings. 相似文献
7.
Oscar Rojo 《Linear algebra and its applications》2006,414(1):199-217
Let T be an unweighted tree of k levels such that in each level the vertices have equal degree. Let nk−j+1 and dk−j+1 be the number of vertices and the degree of them in the level j. We find the eigenvalues of the adjacency matrix and Laplacian matrix of T for the case of two vertices in level 1 (nk = 2), including results concerning to their multiplicity. They are the eigenvalues of leading principal submatrices of nonnegative symmetric tridiagonal matrices of order k × k. The codiagonal entries for these matrices are , 2 ? j ? k, while the diagonal entries are 0, …, 0, ±1, in the case of the adjacency matrix, and d1, d2, …, dk−1, dk ± 1, in the case of the Laplacian matrix. Finally, we use these results to find improved upper bounds for the largest eigenvalue of the adjacency matrix and of the Laplacian matrix of any given tree. 相似文献
8.
The level of a vertex in a rooted graph is one more than its distance from the root vertex. A generalized Bethe tree is a rooted tree in which vertices at the same level have the same degree. We characterize completely the eigenvalues of the Laplacian, signless Laplacian and adjacency matrices of a weighted rooted graph G obtained from a weighted generalized Bethe tree of k levels and weighted cliques in which
- (1)
- the edges connecting vertices at consecutive levels have the same weight,
- (2)
- each set of children, in one or more levels, defines a weighted clique, and
- (3)
- cliques at the same level are isomorphic.
9.
Hye Kyung Kim 《Discrete Mathematics》2008,308(4):555-564
For an abelian group Γ, a formula to compute the characteristic polynomial of a Γ-graph has been obtained by Lee and Kim [Characteristic polynomials of graphs having a semi-free action, Linear algebra Appl. 307 (2005) 35-46]. As a continuation of this work, we give a computational formula for generalized characteristic polynomial of a Γ-graph when Γ is a finite group. Moreover, after showing that the reciprocal of the Bartholdi zeta function of a graph can be derived from the generalized characteristic polynomial of a graph, we compute the reciprocals of the Bartholdi zeta functions of wheels and complete bipartite graphs as an application of our formula. 相似文献
10.
Let G be a graph with n vertices and m edges. Let λ1, λ2, … , λn be the eigenvalues of the adjacency matrix of G, and let μ1, μ2, … , μn be the eigenvalues of the Laplacian matrix of G. An earlier much studied quantity is the energy of the graph G. We now define and investigate the Laplacian energy as . There is a great deal of analogy between the properties of E(G) and LE(G), but also some significant differences. 相似文献
11.
Motivated by a Mohar’s paper proposing “how to order trees by the Laplacian coefficients”, we investigate a partial ordering of trees with diameters 3 and 4 by the Laplacian coefficients. These results are used to determine several orderings of trees by the Laplacian coefficients. 相似文献
12.
Xiao-Dong Zhang 《Discrete Mathematics》2008,308(15):3143-3150
In this paper, we characterize all extremal trees with the largest Laplacian spectral radius in the set of all trees with a given degree sequence. Consequently, we also obtain all extremal trees with the largest Laplacian spectral radius in the sets of all trees of order n with the largest degree, the leaves number and the matching number, respectively. 相似文献
13.
For k, d?2, a Bethe tree is a rooted tree with k levels which the root vertex has degree d, the vertices from level 2 to k-1 have degree d+1 and the vertices at the level k are pendent vertices. So et al, using a theorem by Ky Fan have obtained both upper and lower bounds for the Laplacian energy of bipartite graphs. We shall employ the above mentioned theorem to obtain new and improved bounds for the Laplacian energy in the case of Bethe trees. 相似文献
14.
Hwa Kyung Kim 《Linear algebra and its applications》2011,435(9):2166-2174
For a positive integer m where 1?m?n, the m-competition index (generalized competition index) of a primitive digraph is the smallest positive integer k such that for every pair of vertices x and y, there exist m distinct vertices v1,v2,…,vm such that there are directed walks of length k from x to vi and from y to vi for 1?i?m. The m-competition index is a generalization of the scrambling index and the exponent of a primitive digraph. In this study, we determine an upper bound on the m-competition index of a primitive digraph using Boolean rank and give examples of primitive Boolean matrices that attain the bound. 相似文献
15.
Vladimir Nikiforov 《Linear algebra and its applications》2006,414(1):347-360
Let G be a graph with n vertices and m edges and let μ(G) = μ1(G) ? ? ? μn(G) be the eigenvalues of its adjacency matrix. Set s(G)=∑u∈V(G)∣d(u)-2m/n∣. We prove that
16.
Lingsheng Shi 《Linear algebra and its applications》2007,422(1):58-66
The spectral radius of a (directed) graph is the largest eigenvalue of adjacency matrix of the (directed) graph. We give the relation on the characteristic polynomials of a directed graph and its line graph, and obtain sharp bounds on the spectral radius of directed graphs. We also give the relation on the spectral radii of a graph and its line graph. As a consequence, the spectral radius of a connected graph does not exceed that of its line graph except that the graph is a path. 相似文献
17.
Oscar Rojo 《Linear algebra and its applications》2008,428(4):754-764
Let G=(V(G),E(G)) be a unicyclic simple undirected graph with largest vertex degree Δ. Let Cr be the unique cycle of G. The graph G-E(Cr) is a forest of r rooted trees T1,T2,…,Tr with root vertices v1,v2,…,vr, respectively. Let
18.
Oscar Rojo 《Linear algebra and its applications》2009,430(1):532-882
A generalized Bethe tree is a rooted unweighted tree in which vertices at the same level have the same degree. Let B be a generalized Bethe tree. The algebraic connectivity of:
- the generalized Bethe tree B,
- a tree obtained from the union of B and a tree T isomorphic to a subtree of B such that the root vertex of T is the root vertex of B,
- a tree obtained from the union of r generalized Bethe trees joined at their respective root vertices,
- a graph obtained from the cycle Cr by attaching B, by its root, to each vertex of the cycle, and
- a tree obtained from the path Pr by attaching B, by its root, to each vertex of the path,
- is the smallest eigenvalue of a special type of symmetric tridiagonal matrices. In this paper, we first derive a procedure to compute a tight upper bound on the smallest eigenvalue of this special type of matrices. Finally, we apply the procedure to obtain a tight upper bound on the algebraic connectivity of the above mentioned graphs.
19.
An n × n sign pattern Sn is potentially nilpotent if there is a real matrix having sign pattern Sn and characteristic polynomial xn. A new family of sign patterns Cn with a cycle of every even length is introduced and shown to be potentially nilpotent by explicitly determining the entries of a nilpotent matrix with sign pattern Cn. These nilpotent matrices are used together with a Jacobian argument to show that Cn is spectrally arbitrary, i.e., there is a real matrix having sign pattern Cn and characteristic polynomial for any real μi. Some results and a conjecture on minimality of these spectrally arbitrary sign patterns are given. 相似文献
20.
Dongseok Kim 《Linear algebra and its applications》2008,429(4):688-697
In this paper, we find computational formulae for generalized characteristic polynomials of graph bundles. We show that the number of spanning trees in a graph is the partial derivative (at (0,1)) of the generalized characteristic polynomial of the graph. Since the reciprocal of the Bartholdi zeta function of a graph can be derived from the generalized characteristic polynomial of a graph, consequently, the Bartholdi zeta function of a graph bundle can be computed by using our computational formulae. 相似文献