首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circulant graphs are characterized here as quotient lattices, which are realized as vertices connected by a knot on a k-dimensional flat torus tessellated by hypercubes or hyperparallelotopes. Via this approach we present geometric interpretations for a bound on the diameter of a circulant graph, derive new bounds for the genus of a class of circulant graphs and establish connections with spherical codes and perfect codes in Lee spaces.  相似文献   

2.
We study the energy (i.e., the sum of the absolute values of all eigenvalues) of so-called tadpole graphs, which are obtained by joining a vertex of a cycle to one of the ends of a path. By means of the Coulson integral formula and careful estimation of the resulting integrals, we prove two conjectures on the largest and second-largest energy of a unicyclic graph due to Caporossi, Cvetkovi?, Gutman and Hansen and Gutman, Furtula and Hua, respectively. Moreover, we characterise the non-bipartite unicyclic graphs whose energy is largest.  相似文献   

3.
The energy of a simple graph G, denoted by E(G), is defined as the sum of the absolute values of all eigenvalues of its adjacency matrix. Let Cn denote the cycle of order n and the graph obtained from joining two cycles C6 by a path Pn-12 with its two leaves. Let Bn denote the class of all bipartite bicyclic graphs but not the graph Ra,b, which is obtained from joining two cycles Ca and Cb (a,b10 and ) by an edge. In [I. Gutman, D. Vidovi?, Quest for molecular graphs with maximal energy: a computer experiment, J. Chem. Inf. Sci. 41(2001) 1002-1005], Gutman and Vidovi? conjectured that the bicyclic graph with maximal energy is , for n=14 and n16. In [X. Li, J. Zhang, On bicyclic graphs with maximal energy, Linear Algebra Appl. 427(2007) 87-98], Li and Zhang showed that the conjecture is true for graphs in the class Bn. However, they could not determine which of the two graphs Ra,b and has the maximal value of energy. In [B. Furtula, S. Radenkovi?, I. Gutman, Bicyclic molecular graphs with the greatest energy, J. Serb. Chem. Soc. 73(4)(2008) 431-433], numerical computations up to a+b=50 were reported, supporting the conjecture. So, it is still necessary to have a mathematical proof to this conjecture. This paper is to show that the energy of is larger than that of Ra,b, which proves the conjecture for bipartite bicyclic graphs. For non-bipartite bicyclic graphs, the conjecture is still open.  相似文献   

4.
We study the limiting spectral distribution for a class of circulant type random matrices with heavy tailed input sequence. Unlike the light tailed case where the limit is nonrandom, here the limit is a random probability distribution. We provide an explicit representation of the limit.  相似文献   

5.
For a simple graph G, the energy E(G) is defined as the sum of the absolute values of all the eigenvalues of its adjacency matrix A(G). Let n,m, respectively, be the number of vertices and edges of G. One well-known inequality is that , where λ1 is the spectral radius. If G is k-regular, we have . Denote . Balakrishnan [R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004) 287-295] proved that for each ?>0, there exist infinitely many n for each of which there exists a k-regular graph G of order n with k<n-1 and , and proposed an open problem that, given a positive integer n?3, and ?>0, does there exist a k-regular graph G of order n such that . In this paper, we show that for each ?>0, there exist infinitely many such n that . Moreover, we construct another class of simpler graphs which also supports the first assertion that .  相似文献   

6.
We introduce some determinantal ideals of the generalized Laplacian matrix associated to a digraph G, that we call critical ideals of G. Critical ideals generalize the critical group and the characteristic polynomials of the adjacency and Laplacian matrices of a digraph. The main results of this article are the determination of some minimal generator sets and the reduced Gröbner basis for the critical ideals of the complete graphs, the cycles and the paths. Also, we establish a bound between the number of trivial critical ideals and the stability and clique numbers of a graph.  相似文献   

7.
Cospectral graphs and the generalized adjacency matrix   总被引:1,自引:0,他引:1  
Let J be the all-ones matrix, and let A denote the adjacency matrix of a graph. An old result of Johnson and Newman states that if two graphs are cospectral with respect to yJ − A for two distinct values of y, then they are cospectral for all y. Here we will focus on graphs cospectral with respect to yJ − A for exactly one value of y. We call such graphs -cospectral. It follows that is a rational number, and we prove existence of a pair of -cospectral graphs for every rational . In addition, we generate by computer all -cospectral pairs on at most nine vertices. Recently, Chesnokov and the second author constructed pairs of -cospectral graphs for all rational , where one graph is regular and the other one is not. This phenomenon is only possible for the mentioned values of , and by computer we find all such pairs of -cospectral graphs on at most eleven vertices.  相似文献   

8.
9.
A cycle in a plane graphG is called aW v cycle if it has a connected (or empty) intersection with each face of the graph. We show that if the minimum degree (G)3 thenG has aW v cycle and the lengthw(G) of a longestW v cycle is bounded by the number,f(G), of faces ofG. The classW of graphsG withw(G)=f(G) is completely characterized by an characterized by an inductive construction from two graphs, namelyK 4 and a face merging of two copies ofK 4 on one hand, and in terms involving Halin graphs and face merging on the other hand. Longest cycles in members ofW are investigated. The shortness coefficient ofW is proved to be between one-half and three-quarters inclusively.  相似文献   

10.
The energy of a simple graph G, denoted by E(G), is defined as the sum of the absolute values of all eigenvalues of its adjacency matrix. Denote by Cn the cycle, and the unicyclic graph obtained by connecting a vertex of C6 with a leaf of Pn-6. Caporossi et al. conjectured that the unicyclic graph with maximal energy is for n=8,12,14 and n16. In Hou et al. (2002) [Y. Hou, I. Gutman, C. Woo, Unicyclic graphs with maximal energy, Linear Algebra Appl. 356 (2002) 27-36], the authors proved that is maximal within the class of the unicyclic bipartite n-vertex graphs differing from Cn. And they also claimed that the energies of Cn and is quasi-order incomparable and left this as an open problem. In this paper, by utilizing the Coulson integral formula and some knowledge of real analysis, especially by employing certain combinatorial techniques, we show that the energy of is greater than that of Cn for n=8,12,14 and n16, which completely solves this open problem and partially solves the above conjecture.  相似文献   

11.
A t-walk-regular graph is a graph for which the number of walks of given length between two vertices depends only on the distance between these two vertices, as long as this distance is at most t. Such graphs generalize distance-regular graphs and t-arc-transitive graphs. In this paper, we will focus on 1- and in particular 2-walk-regular graphs, and study analogues of certain results that are important for distance-regular graphs. We will generalize Delsarte?s clique bound to 1-walk-regular graphs, Godsil?s multiplicity bound and Terwilliger?s analysis of the local structure to 2-walk-regular graphs. We will show that 2-walk-regular graphs have a much richer combinatorial structure than 1-walk-regular graphs, for example by proving that there are finitely many non-geometric 2-walk-regular graphs with given smallest eigenvalue and given diameter (a geometric graph is the point graph of a special partial linear space); a result that is analogous to a result on distance-regular graphs. Such a result does not hold for 1-walk-regular graphs, as our construction methods will show.  相似文献   

12.
In this paper we show that certain almost distance-regular graphs, the so-called h-punctually walk-regular graphs, can be characterized through the cospectrality of their perturbed graphs. A graph G with diameter D is called h-punctually walk-regular, for a given hD, if the number of paths of length ? between a pair of vertices u,v at distance h depends only on ?. The graph perturbations considered here are deleting a vertex, adding a loop, adding a pendant edge, adding/removing an edge, amalgamating vertices, and adding a bridging vertex. We show that for walk-regular graphs some of these operations are equivalent, in the sense that one perturbation produces cospectral graphs if and only if the others do. Our study is based on the theory of graph perturbations developed by Cvetkovi?, Godsil, McKay, Rowlinson, Schwenk, and others. As a consequence, some new characterizations of distance-regular graphs are obtained.  相似文献   

13.
The rainbowness, rb(G), of a connected plane graph G is the minimum number k such that any colouring of vertices of the graph G using at least k colours involves a face all vertices of which receive distinct colours. For a connected cubic plane graph G we prove that
  相似文献   

14.
In 1970s, Gutman introduced the concept of the energy E(G) for a simple graph G, which is defined as the sum of the absolute values of the eigenvalues of G. This graph invariant has attracted much attention, and many lower and upper bounds have been established for some classes of graphs among which bipartite graphs are of particular interest. But there are only a few graphs attaining the equalities of those bounds. We however obtain an exact estimate of the energy for almost all graphs by Wigner’s semi-circle law, which generalizes a result of Nikiforov. We further investigate the energy of random multipartite graphs by considering a generalization of Wigner matrix, and obtain some estimates of the energy for random multipartite graphs.  相似文献   

15.
We examine the stationary distribution of random walks on directed graphs. In particular, we focus on the principal ratio, which is the ratio of maximum to minimum values of vertices in the stationary distribution. We give an upper bound for this ratio over all strongly connected graphs on n vertices. We characterize all graphs achieving the upper bound and we give explicit constructions for these extremal graphs. Additionally, we show that under certain conditions, the principal ratio is tightly bounded. We also provide counterexamples to show the principal ratio cannot be tightly bounded under weaker conditions.  相似文献   

16.
For any prime,p, we construct a Cayley graph on the group,G, of affine linear transformations ofℤ/pℤ of degree 2(p−1) and second eigenvalue with the following special property: the adjacency matrix of the graph is supported on the “blocks” associated to the trivial representation and the irreducible representation of sizep−1. SinceG is of orderp(p−1), the correspondingt-uniform Cayley hypergraph has essentially optimal second eigenvalue for this degree and size of the graph (see [2] for definitions). En route we give, for any integerk>1, a simple Cayley graph onp k nodes of degreep of second eigenvalue . The author wishes to acknowledge the National Science Foundation for supporting this research in part under Grant CCR-8858788, and the Office of Naval Research under Grant N00014-87-K-0467.  相似文献   

17.
By the signless Laplacian of a (simple) graph G we mean the matrix Q(G)=D(G)+A(G), where A(G),D(G) denote respectively the adjacency matrix and the diagonal matrix of vertex degrees of G. For every pair of positive integers n,k, it is proved that if 3?k?n-3, then Hn,k, the graph obtained from the star K1,n-1 by joining a vertex of degree 1 to k+1 other vertices of degree 1, is the unique connected graph that maximizes the largest signless Laplacian eigenvalue over all connected graphs with n vertices and n+k edges.  相似文献   

18.
We show that three pairwise 4-regular graphs constructed by the second author are members of infinite families.  相似文献   

19.
On reorienting graphs by pushing down maximal vertices   总被引:1,自引:0,他引:1  
Oliver Pretzel 《Order》1986,3(2):135-153
We study the operation of pushing down elements in the diagram of a finite ordered set. Two natural questions about this operation are, ‘Which orientations of the underlying graph can be obtained from a given orientation by pushing down?’ and ‘Which sets of vertices can become the sets of maximal elements in such orientations?’. For both questions thére are easy necessary conditions. We show that these conditions are also sufficient. The results are extended to cover all induced subgraphs and arbitrary orientations of a finite graph.  相似文献   

20.
Let G be a finite graph of order n with an eigenvalue μ of multiplicity k. (Thus the μ-eigenspace of a (0,1)-adjacency matrix of G has dimension k.) A star complement for μ in G is an induced subgraph G-X of G such that |X|=k and G-X does not have μ as an eigenvalue. An exceptional graph is a connected graph, other than a generalized line graph, whose eigenvalues lie in [-2,). We establish some properties of star complements, and of eigenvectors, of exceptional graphs with least eigenvalue −2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号