首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For a square matrix A, let S(A) be an eigenvalue inclusion set such as the Gershgorin region, the Brauer region in terms of Cassini ovals, and the Ostrowski region. Characterization is obtained for maps Φ on n×n matrices satisfying S(Φ(A)-Φ(B))=S(A-B) for all matrices A and B. From these results, one can deduce the structure of additive or (real) linear maps satisfying S(A)=S(Φ(A)) for every matrix A.  相似文献   

2.
We show that every injective Jordan semi-triple map on the algebra Mn(F) of all n × n matrices with entries in a field F (i.e. a map Φ:Mn(F)→Mn(F) satisfying
Φ(ABA)=Φ(A)Φ(B)Φ(A)  相似文献   

3.
In this paper, our main objective is to study the effect of appending/deleting a column/row on the shorted operators. It turns out that for matrices A and B for which the shorted operator S(A|B) exists, S(A1|B1) of the matrix A1=[A:a] with respect to the matrix B1=[B:b], when it exists, is obtained by appending a suitable column to S(A|B). Moreover, if S(A1|B1) exists, then S(A|B) exists and is obtained from S(A1|B1) by dropping its last column. In the process, we study the effect of appending/deleting a column/row on the space pre-order and the parallel sum of parallel summable matrices. Finally, we specialize to the case of and matrices and study the effect of bordering (by an additional column and a row) on the shorted operator. We conclude the paper with an application to Linear Models with singular dispersion structure.  相似文献   

4.
Let Mm,n(B) be the semimodule of all m×n Boolean matrices where B is the Boolean algebra with two elements. Let k be a positive integer such that 2?k?min(m,n). Let B(m,n,k) denote the subsemimodule of Mm,n(B) spanned by the set of all rank k matrices. We show that if T is a bijective linear mapping on B(m,n,k), then there exist permutation matrices P and Q such that T(A)=PAQ for all AB(m,n,k) or m=n and T(A)=PAtQ for all AB(m,n,k). This result follows from a more general theorem we prove concerning the structure of linear mappings on B(m,n,k) that preserve both the weight of each matrix and rank one matrices of weight k2. Here the weight of a Boolean matrix is the number of its nonzero entries.  相似文献   

5.
Two Hermitian matrices A,BMn(C) are said to be Hermitian-congruent if there exists a nonsingular Hermitian matrix CMn(C) such that B=CAC. In this paper, we give necessary and sufficient conditions for two nonsingular simultaneously unitarily diagonalizable Hermitian matrices A and B to be Hermitian-congruent. Moreover, when A and B are Hermitian-congruent, we describe the possible inertias of the Hermitian matrices C that carry the congruence. We also give necessary and sufficient conditions for any 2-by-2 nonsingular Hermitian matrices to be Hermitian-congruent. In both of the studied cases, we show that if A and B are real and Hermitian-congruent, then they are congruent by a real symmetric matrix. Finally we note that if A and B are 2-by-2 nonsingular real symmetric matrices having the same sign pattern, then there is always a real symmetric matrix C satisfying B=CAC. Moreover, if both matrices are positive, then C can be picked with arbitrary inertia.  相似文献   

6.
Let F(A) be the numerical range or the numerical radius of a square matrix A. Denote by A ° B the Schur product of two matrices A and B. Characterizations are given for mappings on square matrices satisfying F(A ° B) = F(?(A) ° ?(B)) for all matrices A and B. Analogous results are obtained for mappings on Hermitian matrices.  相似文献   

7.
We extend Liu’s fundamental theorem of the geometry of alternate matrices to the second exterior power of an infinite dimensional vector space and also use her theorem to characterize surjective mappings T from the vector space V of all n×n alternate matrices over a field with at least three elements onto itself such that for any pair A, B in V, rank(A-B)?2k if and only if rank(T(A)-T(B))?2k, where k is a fixed positive integer such that n?2k+2 and k?2.  相似文献   

8.
Some new bounds on the spectral radius of matrices   总被引:2,自引:0,他引:2  
A new lower bound on the smallest eigenvalue τ(AB) for the Fan product of two nonsingular M-matrices A and B is given. Meanwhile, we also obtain a new upper bound on the spectral radius ρ(A°B) for nonnegative matrices A and B. These bounds improve some results of Huang (2008) [R. Huang, Some inequalities for the Hadamard product and the Fan product of matrices, Linear Algebra Appl. 428 (2008) 1551-1559].  相似文献   

9.
Some inequalities for the Hadamard product and the Fan product of matrices   总被引:2,自引:0,他引:2  
If A and B are nonsingular M-matrices, a sharp lower bound on the smallest eigenvalue τ(AB) for the Fan product of A and B is given, and a sharp lower bound on τ(A°B-1) for the Hadamard product of A and B-1 is derived. In addition, we also give a sharp upper bound on the spectral radius ρ(A°B) for nonnegative matrices A and B.  相似文献   

10.
We say that a matrix RCn×n is k-involutary if its minimal polynomial is xk-1 for some k?2, so Rk-1=R-1 and the eigenvalues of R are 1,ζ,ζ2,…,ζk-1, where ζ=e2πi/k. Let α,μ∈{0,1,…,k-1}. If RCm×m, ACm×n, SCn×n and R and S are k-involutory, we say that A is (R,S,μ)-symmetric if RAS-1=ζμA, and A is (R,S,α,μ)-symmetric if RAS-α=ζμA.Let L be the class of m×n(R,S,μ)-symmetric matrices or the class of m×n(R,S,α,μ)-symmetric matrices. Given XCn×t and BCm×t, we characterize the matrices A in L that minimize ‖AX-B‖ (Frobenius norm), and, given an arbitrary WCm×n, we find the unique matrix AL that minimizes both ‖AX-B‖ and ‖A-W‖. We also obtain necessary and sufficient conditions for existence of AL such that AX=B, and, assuming that the conditions are satisfied, characterize the set of all such A.  相似文献   

11.
In a recent paper, Neumann and Sze considered for an n × n nonnegative matrix A, the minimization and maximization of ρ(A + S), the spectral radius of (A + S), as S ranges over all the doubly stochastic matrices. They showed that both extremal values are always attained at an n × n permutation matrix. As a permutation matrix is a particular case of a normal matrix whose spectral radius is 1, we consider here, for positive matrices A such that (A + N) is a nonnegative matrix, for all normal matrices N whose spectral radius is 1, the minimization and maximization problems of ρ(A + N) as N ranges over all such matrices. We show that the extremal values always occur at an n × n real unitary matrix. We compare our results with a less recent work of Han, Neumann, and Tastsomeros in which the maximum value of ρ(A + X) over all n × n real matrices X of Frobenius norm was sought.  相似文献   

12.
We prove an inequality for the spectral radius of products of non-negative matrices conjectured by X. Zhan. We show that for all n×n non-negative matrices A and B, ρ(A°B)?ρ((A°A)(B°B))1/2?ρ(AB), in which ° represents the Hadamard product.  相似文献   

13.
Let F be a field and let m and n be integers with m,n?3. Let Mn denote the algebra of n×n matrices over F. In this note, we characterize mappings ψ:MnMm that satisfy one of the following conditions:
1.
|F|=2 or |F|>n+1, and ψ(adj(A+αB))=adj(ψ(A)+αψ(B)) for all A,BMn and αF with ψ(In)≠0.
2.
ψ is surjective and ψ(adj(A-B))=adj(ψ(A)-ψ(B)) for every A,BMn.
Here, adjA denotes the classical adjoint of the matrix A, and In is the identity matrix of order n. We give examples showing the indispensability of the assumption ψ(In)≠0 in our results.  相似文献   

14.
15.
A sign pattern matrix is a matrix whose entries are from the set {+,-,0}. For a real matrix B, sgn(B) is the sign pattern matrix obtained by replacing each positive (respectively, negative, zero) entry of B by + (respectively, −, 0). For a sign pattern matrix A, the sign pattern class of A, denoted Q(A), is defined as {B:sgn(B)=A}. The minimum rank mr(A) (maximum rank MR(A)) of a sign pattern matrix A is the minimum (maximum) of the ranks of the real matrices in Q(A). Several results concerning sign patterns A that require almost unique rank, that is to say, the sign patterns A such that MR(A) = mr(A) + 1, are established and are extended to sign patterns A for which the spread is d=MR(A)-mr(A). A complete characterization of the sign patterns that require almost unique rank is obtained.  相似文献   

16.
Let Mn be the semigroup of n×n complex matrices under the usual multiplication, and let S be different subgroups or semigroups in Mn including the (special) unitary group, (special) general linear group, the semigroups of matrices with bounded ranks. Suppose Λk(A) is the rank-k numerical range and rk(A) is the rank-k numerical radius of AMn. Multiplicative maps ?:SMn satisfying rk(?(A))=rk(A) are characterized. From these results, one can deduce the structure of multiplicative preservers of Λk(A).  相似文献   

17.
We prove the spectral radius inequality ρ(A1°A2°?°Ak)?ρ(A1A2?Ak) for nonnegative matrices using the ideas of Horn and Zhang. We obtain the inequality ‖A°B‖?ρ(ATB) for nonnegative matrices, which improves Schur’s classical inequality ‖A°B‖?‖A‖‖B‖, where ‖·‖ denotes the spectral norm. We also give counterexamples to two conjectures about the Hadamard product.  相似文献   

18.
Pairs (A,B) of mutually annihilating operators AB=BA=0 on a finite dimensional vector space over an algebraically closed field were classified by Gelfand and Ponomarev [Russian Math. Surveys 23 (1968) 1-58] by method of linear relations. The classification of (A,B) over any field was derived by Nazarova, Roiter, Sergeichuk, and Bondarenko [J. Soviet Math. 3 (1975) 636-654] from the classification of finitely generated modules over a dyad of two local Dedekind rings. We give canonical matrices of (A,B) over any field in an explicit form and our proof is constructive: the matrices of (A,B) are sequentially reduced to their canonical form by similarity transformations (A,B)?(S-1AS,S-1BS).  相似文献   

19.
On the numbers of positive entries of reducible nonnegative matrices   总被引:1,自引:0,他引:1  
Let RM(n,d) be the class {AA is an n×n reducible nonnegative matrix and the greatest common divisor of the lengths of all cycles in D(A) is d}, where D(A) is the associated digraph of A. In this paper we determine the set of numbers of positive entries of A for ARM(n,d). We also characterize the reducible nonnegative matrices with the maximum and minimum numbers of positive entries.  相似文献   

20.
Let A1, … , Ak be positive semidefinite matrices and B1, … , Bk arbitrary complex matrices of order n. We show that
span{(A1x)°(A2x)°?°(Akx)|xCn}=range(A1°A2°?°Ak)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号