首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 859 毫秒
1.
HT—6M装置中性束注入加热初步实验   总被引:1,自引:1,他引:0  
一、引 言 在受控核聚变领域中,中性束注入是加热高温等离子体最有效方法之一。目前,几乎所有托卡马克实验中所获得高的温度,都是在有中性束注入情况下实现的。而用中性束注入加热托卡马克等离子体在国内尚属首次。 中性束注入系统的关键是离子源引出高能离子束,经过中性化室将高能离子束转变成高能中性束,并注入到装置中去加热等离子体,以提高等离子体的离子温度。 该系统涉及技术领域广,工程量大,经过多年艰苦努力,HT-6M装置中性束注入系统,终于进入实验阶段。本文介绍当50kW中性束注入HT-6M装置后,等离子体温度净增约80eV。  相似文献   

2.
中性束注入(NBI)是托卡马克装置重要的辅助加热与电流驱动手段,中性原子的离化是决定中性束的加热(能量和粒子沉积剖面)和电流驱动效率的关键环节。通常情况下,利用背景等离子体参数与中性束参数模拟计算快的中性粒子与等离子体的离化,即中性束沉积过程,进而分析托卡马克中性束加热和电流驱动效果。束发射光谱是高能中性粒子注入等离子体后,与等离子体的电子、离子发生碰撞激发,中性粒子退激发过程中产生的一系列特征谱线,其束发射光谱强度受等离子体密度、温度、束能量、束密度等因素影响,可以利用束发射光谱强度变化研究中性束的衰减特性。在EAST托卡马克上通过实验测量中性束粒子与等离子体碰撞激发的光谱强度,分析得到了中性束在不同等离子体密度以及不同中性束能量下的衰减特性,并采用主动束光谱仿真与数值分析软件(SOS)进行了相应的模拟计算,研究表明实验测量与模拟计算结果两者具有较好的一致性,这验证了通过实验测量束发射光谱获取中性束衰减特征的可行性。  相似文献   

3.
为了满足中国核聚变工程实验堆(CFETR)对等离子体加热和电流驱动的要求,从总体布局、束传输 系统、束源系统三方面进行了中性束注入系统的概念设计。利用参数计算的方法,根据聚变等离子体的要求明确 了中性束注入系统的性能指标和基本布局;利用束传输空间分布程序评估了束传输性能,确定了各功能部件的空 间布局结构;在此基础上,确定了束源系统的性能指标和引出系统布局方式,结合当前研发进展,明确了束源的 基本技术方案。由此完成了中性束注入系统参数指标、束传输关键尺寸、束源性能指标等设计要求,为后续工程 设计奠定了基础。  相似文献   

4.
采用蒙特卡罗程序NUBEAM对EAST NBI上的中性束注入角度(中性束系统中心线与注入窗口轴线的夹角)进行了分析。讨论了中性束注入角度对电流驱动效率、加热效率和束的穿透功率的影响,对EAST NBI系统选取了一个最优的注入角度。模拟结果表明:对EAST NBI系统,在典型的EAST实验参数和实际工程允许的范围内,19.5°是最优的注入角度。在此注入角度下,可以通过增大等离子体密度的方法来进一步提高加热效率和电流驱动效率,并减少束的穿透功率。  相似文献   

5.
本文仔细地研究了高能中性束注入加热的有关问题,利用多束模型计算了中性束注入加热。本文的主要特点是在捕获快离子与本底离子和电子能量交换表示式中,直接用误差函数积分进行计算,而不像以前的计算中作大参量和小参量展开近似。当快离子能量比较低时,大参量展开不再适用,因此本文的计算更为精确,更为有用。给出了多束注入加热的计算结果及其结果的讨论。本计算方法可与输运方程联立求解,数值模拟等离子体行为。  相似文献   

6.
为EAST 装置中性束注入器设计了一套用于将剩余离子在线电偏转的结构,并对系统各设备的核心参数进行了估算。在4.41kV 偏转电压作用下,该电偏转系统可提供80keV 氘离子束偏转所需的偏转电场。在偏转电场调制情况下,该电偏转系统可有效降低极板表面的热负荷,进而满足EAST 中性束注入器稳态运行的需要。  相似文献   

7.
采用数值模拟的方法研究中性束辐射光谱(BES)对开展与中性束相关的光谱诊断与实验有重要的指导意义.本文在HL-2A托卡马克装置上利用ADAS数据库(Atomic Data and Analysis Structure,1998)计算有效束辐射系数和有效束衰减系数,分析了束辐射光谱强度与等离子体运行参数和中性束参数的关系,并在不同的中性束注入能量、等离子体密度分布和等离子体温度分布的情况下,获得了束辐射光谱强度的空间分布.在ne=2×1013 cm< 关键词: 中性束 束辐射光谱 束衰减  相似文献   

8.
目前,一些科学和技术部门广泛地应用中性束技术,特别是在受控核聚变研究中,采用强流中性束注入是维持和加热等离子体的主要方法之一。可用两种方法获得中性束,其一是正离子束通过靶物质捕获电子,其二是用靶物质剥离负离子束的电子。我们曾用30—100keV氢离子束与气体靶、碱金属蒸气靶相互作用获得中性束,并进行了测量。本文用氢离子束通过等离子体靶获得中性束,进一步探索提高中性粒子产额的方法。初步测定了氢离子束与氩等离子体靶作用的电荷交换中性化效率,并对中性化机理作初步探讨。  相似文献   

9.
中性束注入是HL-2M装置最有效的辅助加热方式之一,而中性束低温泵是为了保证整个中性束系统能够工作在更好的状态。分别用解析计算和Flowmaster数值计算方法对HL-2M中性束低温泵管线的流阻进行了计算,并对两种计算结果进行了比较,为HL-2M低温系统的设计提供一定的依据。  相似文献   

10.
受控聚变研究领域取得的重要进展是与中性束技术的发和大功率快粒子中性束注入密切相关的。中性束注入是等离子体辅助加热、非感应电流驱动、加料和控制等离子体电流分布的主要技术手段。  相似文献   

11.
HL—1M中性束注入期间离子温度的变化   总被引:7,自引:1,他引:6  
在ML-1M中性束注入期间,我们用电荷交换中性普子能谱仪测量了等离子体离子温度的。结果表明,加热效果比较好时,离子温度可提高1倍左右。  相似文献   

12.
通过区分热离子和超热离子,讨论了HL-1M等离子体中性粒子束加热的」初步实验结果,分析表明,虽然电子对离子的磁撞加热机制仍然占主导地位,但中性粒子束也加热了离子。  相似文献   

13.
为EAST装置中性束注入器设计了一套用于将剩余离子在线电偏转的结构,并对系统各设备的核心参数进行了估算。在4.41kV偏转电压作用下,该电偏转系统可提供80keV氘离子束偏转所需的偏转电场。在偏转电场调制情况下,该电偏转系统可有效降低极板表面的热负荷,进而满足EAST中性束注入器稳态运行的需要。  相似文献   

14.
EAST NBI束线综合测试台已研制完成并具备一台兆瓦级离子源测试运行的全套电源设备,包括离子源灯丝电源、弧电源、加速器电源、抑制极电源、偏转磁体电源及缓冲器电源等。介绍了EAST兆瓦级离子源进行起弧放电调试运行的方式,叙述了各套离子源电源系统的设计结构、技术特点及运行控制方式,分析了离子源电源系统稳定可靠运行需要解决的各个难点,给出了EAST束线样机进行高功率及长脉冲束引出测试运行的实验结果。  相似文献   

15.
本文叙述了用自己研制的六道中性粒子分析器(即中性粒子谱仪),测量HL-1托卡马克装置离子温度的实验,给出了在1986年进行的一组放电实验所得等离子体的离子温度及其随放电时间变化的结果,测得的中心离子温度的典型值为474eV,在相应等离子体参数下,Artsimovich经验公式给出450eV  相似文献   

16.
中性束注入是等离子体加热和电流驱动的最有效方法之一。中性束注入的三个基本过程为:离子束的产生,离子束的中性化和中性束的传输,其中,离子束的中性化是关键环节之一。对于EAST-NBI气体中性化室而言,中性化室内气体靶厚度会直接影响离子束的中性化效率,而且还会进一步影响到中性束的传输效率。基于多普勒频移效应,提出了一种新的诊断气体靶厚度的方法,并且已经被应用于EASTNBI测试平台上。该方法主要是基于中性束的束成分随气体靶厚度的演化过程,利用中性束发射Dα光谱线强度完成计算。因此,它被应用于中国科学院等离子体物理研究所EASTNBI装置上。在中性化室出口处的观测窗口上进行测量,在束能量为40~65 keV时,气体靶厚度值为(0.16~0.22)×1016 cm-2,随着引出束流的变化,气体靶厚度随之改变。根据质量守恒定律,对中性化室内的气体靶厚度进行一个粗略的估算,估算的结果与测量的结果基本保持一致,从而证明了该诊断方法的合理性。综上,实验结果表明,该种基于多普勒频移效应的光谱诊断法可以被用于测量中性化室内的气体靶厚度。  相似文献   

17.
由等离子体引出强流离子束的光学数值模拟   总被引:2,自引:2,他引:0  
本文叙述了中性束注入器中的强流离子源引出系统离子束光学性质的数值模拟方法,并给出了典型计算结果。计算结果表明:用这种方法能反映强流离子源引出系统最本质的束光学性质,可供选取和研究强流离子束光学系统之用。  相似文献   

18.
研究了在托卡马克装置中中性束注入时快离子自举电流的产生。利用快离子分布函数在两小增量δ=ρp/a (ρp是极向拉莫尔半径,a是小半径)和δ*=τB/τs(τB是俘获粒子反弹周期,τs是慢化时间)下进行展开的方法求解漂移动力学方程;给出了快离子自举电流的一般表达式。计算了圆截面大纵横比托卡马克中快离子自举电流密度分布和总的快离子自举电流的大小,研究表明:在中性束垂直注入时快离子自举电流约占总电流10%;自举电流的大小既敏感地依赖于中性束注入的角度——平行注入时较小、接近垂直时迅速增大,同时也较强的依赖于快离子的产生速度与临界速度的比值,即vb/vc,而vb2∝E(束能量);自举电流的大小随注入束能量的增加而迅速增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号