首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc sulfide (ZnS) thin films in zinc-blende (ZB) and wurtzite (W) phases have been fabricated by pulsed laser deposition. 150 MeV Ni ion beam irradiation has been carried out at different fluences ranging from 1011 to 1013 ions/cm2 at room temperature for ion induced modifications. Structural phase transformation in ZnS from W to ZB phase is observed after high energy ion irradiation which leads to the decrease in bandgap. Generation of high pressure and temperature by thermal spike during MeV ion irradiation along the ion trajectory in the films is responsible for the structural phase transformation.  相似文献   

2.
Diamond-like carbon (DLC) films were fabricated by pulsed laser ablation of a liquid target. During deposition process the growing films were exited by a laser beam irradiation. The films were deposited onto the fused silica using 248 nm KrF eximer laser at room temperature and 10−3 mbar pressure. Film irradiation was carried out by the same KrF laser operating periodically between the deposition and excitation regimes. Deposited DLC films were characterized by Raman scattering spectroscopy. The results obtained suggested that laser irradiation intensity has noticeable influence on the structure and hybridization of carbon atoms deposited. For materials deposited at moderate irradiation intensities a very high and sharp peak appeared at 1332 cm−1, characteristic of diamond crystals. At higher irradiation intensities the graphitization of the amorphous films was observed. Thus, at optimal energy density the individual sp3-hybridized carbon phase was deposited inside the amorphous carbon structure. Surface morphology for DLC has been analyzed using atomic force microscopy (AFM) indicating that more regular diamond cluster formation at optimal additional laser illumination conditions (∼20 mJ per impulse) is possible.  相似文献   

3.
Silicon carbide (SiC) films were synthesized by combined metal vapor vacuum arc (MEVVA) ion implantation with ion beam assisted deposition (IBAD) techniques. Carbon ions with 40 keV energy were implanted into Si(1 0 0) substrates at ion fluence of 5 × 1016 ions/cm2. Then silicon and carbon atoms were co-sputtered on the Si(1 0 0) substrate surface, at the same time the samples underwent assistant Ar-ion irradiation at 20 keV energy. A group of samples with substrate temperatures ranging from 400 to 600 °C were used to analyze the effect of temperature on formation of the SiC film. Influence of the assistant Ar-ion irradiation was also investigated. The structure, morphology and mechanical properties of the deposited films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and nanoindentation, respectively. The bond configurations were obtained from IR absorption and Raman spectroscopy. The experimental results indicate that microcrystalline SiC films were synthesized at 600 °C. The substrate temperature and assistant Ar-ion irradiation played a key role in the process. The assistant Ar-ion irradiation also helps increasing the nanohardness and bulk modulus of the SiC films. The best values of nanohardness and bulk modulus were 24.1 and 282.6 GPa, respectively.  相似文献   

4.
The formation of defects in carbon nanotubes under irradiation with argon ions is investigated. The π plasmons generated in single-walled and multiwalled carbon nanotubes are examined using electron energy-loss spectroscopy. In the course of experiments, the supramolecular structure of nanotubes is stepwise modified by an argon ion beam (the maximum irradiation dose is 360 μC/cm2). The content of argon ions implanted into a nanotube structure is controlled using Auger electron spectroscopy. The effect of ion irradiation on the π-plasmon energy Eπ and on the half-width at half-maximum δE of the π-plasmon spectrum is determined experimentally. An expression relating the above quantities and the concentration of implanted argon is derived. It is shown that the formation of defects under ion irradiation is a discontinuous process occurring in a stepwise manner. A qualitative phenomenological interpretation is proposed for the experimentally revealed decrease in the π-plasmon energy Eπ and for its attendant broadening of the π-plasmon spectrum. The assumption is made that the microscopic mechanism of the observed phenomena is associated with the narrowing of the energy π subbands in the electric field of charged defects generated by ions.  相似文献   

5.
Tris-(8-hydroxyquinoline)aluminum (Alq3), one of the most widely used light emitting and electron transport materials in organic luminescent devices, has been synthesized. Alq3 thin films have been deposited by a thermal evaporation process on glass substrates. The effect of swift heavy ion (SHI) irradiation using 40 MeV Li3+ on the Alq3 thin films has been studied by UV-visible, infrared, photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectroscopy. From TRPL studies, it is found that the PL of Alq3 thin films arises from two species corresponding to its two geometrical isomers, namely facial and meridional having two different life times. It is also confirmed that the PL and lifetimes of excitons decrease with the increase of ion fluences of SHI of 40 MeV Li3+, indicating a transfer of exciton energy to unstable cationic Alq3 species generated by SHI irradiation.  相似文献   

6.
The effect of high electronic energy deposition on the structure, surface topography, optical properties, and electronic structure of cadmium sulfide (CdS) thin films have been investigated by irradiating the films with 100 MeV Ag+7 ions at different ion fluences in the range of 1012–1013 ions/cm2. The CdS films were deposited on glass substrate by thermal evaporation, and the films studied in the present work are polycrystalline with crystallites preferentially oriented along (002)-H direction. It is shown that swift heavy ion (SHI) irradiation leads to grain agglomeration and hence an increase in the grain size at low ion fluences. The observed lattice compaction was related to irradiation induced polygonization. The optical band gap energy decreased after irradiation, possibly due to the combined effect of change in the grain size and in the creation of intermediate energy levels. Enhanced nonradiative recombination via additional deep levels, introduced by SHI irradiation was noticed from photoluminescence (PL) analysis. A shift in the core levels associated with the change in Fermi level position was realized from XPS analysis. The chemistry of CdS film surface was studied which showed profound chemisorption of oxygen on the surface of CdS.  相似文献   

7.
Carbon films 110–180 nm thick are fabricated on nickel substrates by the ion sputtering of graphite with simultaneous electron irradiation and subsequent ion irradiation. Irradiation leads to the formation of bonds in the films in various proportions due to the sp and sp 3 hybridization of orbitals (sp-and sp 3-bonds). Ion irradiation induces, to a greater extent, the formation of sp bonds, while concurrent electron irradiation increases the portion of sp 3 bonds. Electron and ion irradiation increases the film microhardness which reaches a value of 12 GPa. A model of the kinetics of creating carbon allotropes in a deposited film is proposed, which is based on the competition between the formation and breakage of carbon bonds during hybridization of different types. Electron and ion irradiation influence the probabilities of the formation and breakage of carbon bonds in the deposited film. The model provides a qualitative interpretation of the observed content ratios of carbon phases in the deposited film.  相似文献   

8.
Swift heavy ion (SHI) beam induced irradiation is an established technique for investigating structural modifications in thin films depending on the S e sensitivity of material. Intermixing due to 120 MeV Au ion irradiation at different fluences from 1012 to 1014 ions/cm2 has been reported as a function of ion fluence in a-Si/Zr/a-Si thin films on Si substrate. The samples are characterized before (pristine) and after irradiation using Grazing Incident X-ray Diffraction (GIXRD) and Rutherford Backscattering Spectroscopy (RBS), which confirm the formation of ZrSi at thin film interface. It is suggested that mixing is mainly due to electronic energy loss since the energy transferred from high energy ions seems to create a transient molten zone along the ion track. It is found that the interface mixing increases linearly with the increase in ion fluence. The mixing effect explained in the framework of Thermal spike model. The irradiation effect on the surface roughness of the system is measured using Atomic Force Microscopy (AFM) technique. The current conduction mechanism and Schottky barrier height are also calculated by taking I–V curves across the Metal/Si junction.  相似文献   

9.
The influence of 200 MeV Au ion irradiation on the surface properties of polycrystalline fullerene films has been investigated. The X-ray photoelectron and X-ray Auger electron spectroscopies are employed to study the ion-induced modification of the fullerene, near the surface region. The shift of C 1s core level and decrease in intensity of shake-up satellite were used to investigate the structural changes (like sp2 to sp3 conversion) and reduction of π electrons, respectively, under heavy ion irradiation. Further, X-ray Auger electron spectroscopy was employed to investigate hybridization conversion qualitatively as a function of ion fluence.  相似文献   

10.
Corrosion resistance of carbon steel coated with thin film deposited from Cr(CO)6 using an ArF excimer laser (193 nm) has been evaluated by an electrochemical method as a function of laser beam intensity. The carbon steel coated with the film formed at higher beam intensity shows higher corrosion resistance. Microstructure, composition, and thickness of the films have also been investigated. SEM micrographs show that the films consist of small grains which decrease in size with increasing beam intensity. Auger electron spectroscopy (AES) combined with Ar+ beam sputtering reveals that the films deposited at higher beam intensity give higher chromium content, and that the thickness at a fixed total irradiation energy increases up to the intensity of 10 MW cm–2, falling above this intensity. In addition, the change of film thickness by addition of buffer gases (Ar, CO, and H2O) has been investigated. The thickness is 10 times smaller under the addition of H2O, and twice smaller under the addition of Ar or CO than without the addition of gases. A deposition mechanism based on photolysis of Cr(CO)6 in the gas phase is proposed related to the experimental data after the discussion of several possible mechanisms.  相似文献   

11.
The effect of ionizing radiations on semiconductor thin films has been less investigated.1.2 In Ref. 1 the authors studied the effect of electron irradiation on the resistivity of thin epitaxial silicon films. The effects of electron irradiation at energies varying between 11 keV and 100 keV confirmed those obtained with monocrystals.3 The variation of electrical conductivity and of the distribution of carriers in the silicon epitaxial thin films due to the simultaneous action of silicon ion implantation and evaporation in vacuum was studied in Ref. 4.  相似文献   

12.
The influence of low-energy Ar ion beam irradiation on both electrical and optical properties of low-density polyethylene (LDPE) films is presented. The polymer films were bombarded with 320 keV Ar ions with fuences up to 1×1015 cm?2. Electrical properties of LDPE films were measured and the effect of ion bombardment on the DC conductivity, dielectric constant and loss was studied. Optically, the energy gap, the Urbach’s energy and the number of carbon atoms in a cluster were estimated for all polymer samples using the UV–Vis spectrophotometry technique. The obtained results showed slight enhancement in the conductivity and dielectric parameters due to the increase in ion fluence. Meanwhile, the energy gap and the Urbach’s energy values showed significant decrease by increasing the Ar ion fluence. It was found that the ion bombardment induced chain scission in the polymer chain causing some carbonization. An increase in the number of carbon atoms per cluster was also observed.  相似文献   

13.
The initial field electron emission degradation behaviour of original nano-structured sp^2-bonded amorphous carbon films has been observed, which can be attributed to the increase of the work function of the film in the field emission process analysed using a Fowler-Nordheim plot. The possible reason for the change of work function is suggested to be the desorption of hydrogen from the original hydrogen termination film surface due to field emission current-induced local heating. For the explanation of the emission degradation behaviour of the nano-structured sp2-bonded amorphous carbon film, a cluster model with a series of graphite (0001) basal surfaces has been presented, and the theoretical calculations have been performed to investigate work functions of graphite (0001) surfaces with different hydrogen atom and ion chemisorption sites by using first principles method based on density functional theory-local density approximation.  相似文献   

14.
 利用能量为1.7MeV, 注量分别为1.25×1013/cm2, 1.25×1014/cm2, 1.25×1015/cm2的电子束辐照VO2薄膜,采用XPS, XRD等测试手段对电子辐照前后的样品进行分析,并研究了电子辐照对样品相变过程中光透射特性的影响。结果表明电子辐照引起VO2薄膜中V离子出现价态变化现象,并使薄膜的X射线衍射峰发生变化。电子辐照在样品中产生的这些变化显著改变了VO2薄膜的热致相变光学特性。  相似文献   

15.
The electron transport properties of two types of carbon-polyimide (C-PI) nanocomposite thin films have been evaluated. Conductive nanocomposites formed by incorporation of 30 nm carbon particles prior to polymer cross linking (ex situ formation) has been compared to high energy ion beam irradiation in situ formation of nanoscale carbon clusters within the polymer composite. Addition of carbon nanoparticles were able to reduce the resistivity by 13 orders of magnitude for 8 vol% carbon content. The irradiated in situ formed film showed a comparable resistivity to this 8% C-PI film. All the films exhibited negative temperature coefficient of resistance (NTCR) behaviour. While in the ex situ films the NTCR decreased progressively with increasing temperature above 350 K, the in situ film exhibited a constant NTCR value at ambient as well as elevated temperatures indicating that films formed by ion beam irradiation eliminate possible clustering of nanoparticles prior to crosslinking seen in the ex situ films. The optimum hop energies for the ex situ films ranged from 23.1 to 8.05 meV when carbon content increased from 1 to 8 vol% and the corresponding value for the in situ formed film was 34.94 meV. These films had appreciable NTCR values, and were evaluated for their thermistor behaviour as a class of material with potential for temperature sensing devices.  相似文献   

16.
Thin (about 270 nm) nanocrystalline films of zinc oxide (ZnO) are obtained on quartz substrates using ion sputtering and irradiated with Ag+ ions at an energy of 30 keV and relatively high fluences at ion current densities of 4, 8, and 12 µA/cm2. The X-ray analysis, scanning electron microscopy, and optical spectroscopy are used to study the effect of irradiation dose and ion current density on the structural modification and optical properties of the ZnO films. Nontrivial dependences of the structural and optical parameters of the films on the ion irradiation regimes are due to radiation heating and film sputtering under the action of the ion beam, diffusion of impurity, formation of silver nanoparticles in the irradiated layer at high implantation fluences, and the diffusion of implanted impurity at relatively high ion current densities.  相似文献   

17.
The irradiation effects of 2 MeV He+ and Ar+ ions on the film structure of the C–Si system were investigated with RHEED and XPS. The formation of SiC phase and/or the growth of epitaxial SiC were possible by He+ irradiation for the carbon films up to 0.7 nm in thickness, which was thinner than that by Ar+ irradiation. The He+ irradiation could not grow the turbostratic graphite which could be grown by Ar+ irradiation. The mechanism of the formation and the epitaxial growth of SiC by ion irradiation was discussed from the view point of the energy transfer from the irradiated ions.  相似文献   

18.
Photon stimulated ion desorption (PSID) and Near-edge X-ray absorption fine structure (NEXAFS) studies have been performed on poly-3-hexylthiophene and nanocomposites thin films made of poly-3-hexylthiophene/multi-walled carbon nanotubes (MWNT) filled with iron/iron-oxide. The experiments were performed at the Brazilian Synchrotron Light Source (LNLS) operating in a single-bunch mode following sulphur K-shell photoexcitation and using time-of-flight mass spectrometry for ion analysis. Both PSID mass spectra show great similarity and exhibit desorption of the polymer fragments only. This result seems to be in accordance with previous morphological studies on these materials, which suggested that the nanotubes are highly dispersed and involved by the polymer. Although similar, the spectra present shifts in the direction of greater time-of-flights in the case of the poly-3-hexylthiophene/multi-walled carbon nanotube composite. This behavior may be related to the donation of electronic charge between the polymer matrix and the carbon nanotubes. In both cases, S+ desorption seems to be suppressed, which may be due to the hexyl side-chains. Relative desorption ion yield curves have been determined as a function of the photon energy, which reproduced the photoabsorption spectrum. These results are discussed in terms of the indirect XESD (X-ray induced electron stimulated desorption) process.  相似文献   

19.
We report the structural and tribological characterization of nanostructured CNx thin films produced by the deposition of a supersonic carbon cluster beam assisted by nitrogen ion bombardment. The influence of the deposition parameters on the chemical composition and structure of the films has been systematically studied by X-ray photoelectron spectroscopy, elastic recoil detection analysis, transmission electron microscopy and atomic force microscopy. Depending on the deposition parameters, the films show a structure ranging from amorphous to disordered graphitic with interlinked planes. Nitrogen content depends on the nitrogen ion kinetic energy. The films have a very low density with a high surface roughness. Friction measurements at the nanoscale show a correlation between nitrogen content and mechanical properties of the system. PACS 61.46-w  相似文献   

20.
The synthesis of nanocrystalline ZnS thin films by pulsed laser deposition and their modification by swift heavy ions are presented. The irradiations with 150 MeV Ni ions at fluences of 1×1011, 1×1012 and 1×1013 ions/cm2 have been used for these studies. Irradiation results in structural phase transformation and bandgap modification of these films are investigated by using X-ray diffraction and UV-visible absorption measurements, respectively. Since stoichiometry changes induced by irradiation can contribute to the modification of these properties, elastic recoil detection analysis has been performed on pristine and 150 MeV Ni ions irradiated ZnS thin films using a 120 MeV Ag ion beam. The stoichiometry of the films has been found to be similar for pristine and ion irradiated samples. A structural phase diagram based on thermal and pressure spikes has been constructed to explain the structural phase transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号