共查询到18条相似文献,搜索用时 280 毫秒
1.
2.
3.
借助巯基试剂,在纳米金颗粒表面修饰生物活性物质Mb,制备保持有Mb生物活性的功能化金纳米巯基乙胺-Au NPs-Mb.采用UV-Vis、FTIR光谱和投射电镜表征其结构,该纳米颗粒分布均匀且粒径均一,并显著改善了金纳米颗粒团聚现象.以Mb功能化金纳米为基元,采用单层自组装及层层自组装方式将其修饰到裸金电极表面.各Mb或Mb-Cu电极的电化学测试并未借助电子传递媒介.配位Cu~(2+)后,修饰有Mb的单层及层层自组装修饰的催化还原能力均显著提升.其中Cu~(2+)配位的{巯基乙胺-Au NPs-Mb}3/Au修饰电极作为一种新型H2O2生物传感器,响应时间大约为2 s,米氏常数KappM为0.787 mmol/L,表现出了较强的还原H2O2的催化活性,且稳定性较好. 相似文献
4.
利用混合自组装的方式,将Mb功能化纳米金(Mb-AuNPs-MUA)修饰在金电极表面,以制备出检测超氧阴离子无电子媒介体生物传感器.采用UV-Vis考察修饰纳米团簇的相关特征,利用修饰电极检测DMSO/NaOH体系产生的超氧阴离子.试验结果表明:该修饰电极对超氧阴离子的歧化反应具有显著的催化活性,计算出异相电子传递速率常数(Ks)为0.041 cm/s,电子转移系数(α)为0.435.在0.06~0.2 μmol/L范围内,超氧阴离子浓度与峰电流呈良好的线性关系,相关系数R2为0.9719,方法检出限(LOD)为1.129×10-3 μmol/L(S/N=3)、3.683×10-3 μmol/L(S/N=10),精密度试验测定得相对标准偏差(RSD,n=9)为3.83%. 相似文献
5.
甲烷氧化菌素-铜配合物催化过氧化氢氧化对苯二酚 总被引:1,自引:0,他引:1
为了探讨甲烷氧化菌素(Mb)-铜配合物(Mb-Cu)模拟过氧化物酶的可行性, 利用HP20大孔树脂、 Supelco LC-C18固相萃取和固定化金属亲和层析从甲基弯菌IMV3011中分离纯化得到Mb. 铬天青比色法显示Mb具有铜亲和性. 通过液相色谱-飞行时间质谱联用仪、 紫外光谱和荧光光谱对Mb结构进行了表征. 使用Mb-Cu配合物作为过氧化物酶模拟物, 利用紫外-可见分光光度法研究了Mb-Cu催化过氧化氢氧化对苯二酚的动力学. 考察了体系温度、 Mb-Cu添加量及过氧化氢浓度对催化反应的影响, 发现Mb-Cu符合生物催化剂条件影响的一般规律, 但比生物酶具有更高的热稳定性. 研究结果表明, Mb-Cu可作为催化氧化对苯二酚的过氧化物酶模拟酶. 相似文献
6.
7.
8.
NOx催化的甲烷气相氧化反应 总被引:1,自引:0,他引:1
考察了没有固体催化剂时NOx对甲烷气相氧化的催化作用,并用原位红外光谱研究了CH4-O2-NOx体系随温度的变化.实验结果表明,NOx对甲烷气相氧化有很高的催化活性.在20%CH4-10%O2体系中加入0.05%~0.2%的NO后,反应温度可降低200~300℃,在650~700℃下反应时,CH4转化率和CO选择性可分别达到38%和90%,产物中的n(H2)/n(CO)比为0.4~0.7.反应产物中可观察到有甲醛、甲醇和乙烯等,通过改变反应条件可以控制各组分的相对浓度. 相似文献
9.
氧化条件下NOx催化的甲烷均相部分氧化 总被引:2,自引:0,他引:2
考察了没有固体催化剂时NOx对甲烷气相氧化的促进作用.实验结果表明,即使在强氧化条件下(O2/CH4=5),NOx对甲烷部分氧化制一氧化碳仍然有明显的催化活性.在CH4-O2体系中加入0.005%~0.2%的NO后,反应温度可降低200-300 ℃.在反应产物中还可观察到甲醛和乙烯,通过改变反应条件可以控制它们的相对浓度. 相似文献
10.
铬天青S分光光度法测定甲烷氧化菌素的研究 总被引:2,自引:0,他引:2
铬天青S(CAS)在十六烷基三甲基溴化铵存在条件下能与Cu产生蓝紫色的络合物,乙二胺四乙酸二钠(EDTA)和甲烷氧化菌素(mb)可以夺取络合物CAS-Cu中的Cu而产生颜色变化.采用分光光度法绘制二者的铜络合曲线,得出回归方程,进而计算出mb的EDTA相当量,最终设计一种检测甲烷氧化菌素的测定方法.其最大吸收波长为60... 相似文献
11.
Size of Gold Nanoparticles Driving Selective Amide Synthesis through Aerobic Condensation of Aldehydes and Amines 下载免费PDF全文
Dr. Hiroyuki Miyamura Hyemin Min Dr. Jean‐François Soulé Prof. Dr. Shū Kobayashi 《Angewandte Chemie (International ed. in English)》2015,54(26):7564-7567
Metal nanoparticles (NPs) have attracted much attention in many fields due to their intrinsic characteristics. It is generally accepted that smaller NPs (1.5–3 nm) are more active than larger NPs, and reverse cases are very rare. We report here the direct aerobic oxidative amide synthesis from aldehydes and amines catalyzed by polymer‐incarcerated gold (Au) NPs. A unique correlation between imine/amide selectivity and size of NPs was discovered; Au‐NPs of medium size (4.5–11 nm) were found to be optimal. High yields were obtained with a broad range of substrates, including primary amines. Au‐NPs of medium size could be recovered and reused several times without loss of activity, and they showed good activity and selectivity in amide formation from alcohols and amines. 相似文献
12.
Thermoresponsive dendronized gelatins (GelG1) or gelatin methacrylates (GelG1MA) were used as precursors to modulate the efficient reduction of Au(III) to form stable gold nanoparticles (AuNPs) through UV irradiation. These dendronized gelatins were obtained through the amidation of gelatin or gelatin methacrylates with dendritic oligoethylene glycols (OEGs). Crowded OEG dendrons along the gelatin backbones create a hydrophobic microenvironment, which promotes the reduction of Au(III). Gelatin backbones act as ligands through the electron-rich groups to facilitate the reduction, while the dendritic OEGs provide shielding effects through crowding to form a hydrophobic microenvironment, which not only enhances the reduction but also stabilize the formed AuNPs through encapsulation. The effects of dendron coverage on the dendronized biomacromolecules and their thermoresponsiveness on the reduction kinetics were examined. Dendronized gelatin/AuNPs hydrogels were further prepared through the in situ photo-crosslinking of GelG1MA. The modification of natural macromolecules through dendronization presented in this report facilitates a novel platform for the environmentally friendly synthesis of noble metal nanoparticles, which may form a new strategy for developing smart nano-biosensors and nano-devices. 相似文献
13.
14.
15.
Mohannad T. Aljarrah Alaa M. Alboull Mohammad S. Alharahsheh Azad Ashraf Amith Khandakar 《Molecules (Basel, Switzerland)》2022,27(24)
The synthesis of gold nanoparticles (GNPs) using chemical reduction in batch and microreactor methods has been reported. A parametric study of the effect of several parameters on the size of gold nanoparticles was performed in batch synthesis mode using the modified Martin method. The best-obtained conditions were used to synthesize gold nanoparticles using a glass chip microreactor, and the size of the resulting GNPs from both methods was compared. The presence of polyvinyl alcohol (SC) was used as a capping agent, and sodium borohydride (SB) was used as a reducing agent. Several parameters were studied, including HAuCl4, SC, SB concentrations, the volumetric ratio of SB to gold precursor, pH, temperature, and mixing speed. Various techniques were used to characterize the resulting nanoparticles, including Atomic Absorbance spectroscopy (AAS), Ultraviolet-visible spectroscopy (UV-Vis), and dynamic light scratching (DLS). Optimum conditions were obtained for the synthesis of gold nanoparticles. Under similar reaction conditions, the microreactor consistently produced smaller nanoparticles in the range of 10.42–11.31 nm with a reaction time of less than 1 min. 相似文献
16.
在不引入其它还原剂和稳定剂的情况下, 加热天然生物多聚糖——壳聚糖(CHIT)和氯金酸的混合溶液, 一步反应制备高稳定性的金纳米粒子(GNPs). 采用紫外光谱、红外光谱、热重分析和透射电镜对产品进行了表征. 结果表明: 改变CHIT的浓度能够调控GNPs的光学和结构性质; 老化-时效处理可以作为粒子增长过程中的一个调控手段. 动力学数据证明GNPs的时效处理过程是一个CHIT诱导的自催化生长过程; 红外谱中1713.3 cm-1左右出现的新的吸收带, 可能是作为还原剂参加反应的壳聚糖或者它的水解产物分子中的部分羟基被氧化为羰基引起的. 本文工作也为进一步阐明目前还处于探索阶段的纳米粒子的形成机制以及实现其工业化绿色生产提供了可能性. 相似文献
17.
18.
Thathan Premkumar Dongsik Kim Kyungjae Lee Kurt E. Geckeler 《Macromolecular rapid communications》2007,28(7):888-893
The preparation of metal nanoparticles generally requires the use of mostly toxic reducing agents according to state‐of‐the‐art procedures. Here, we report that polysorbate 80, a polymeric nonionic surfactant, when reacted with a gold salt in water at room temperature, yields well‐dispersed gold nanoparticles. Furthermore, we could control the particle size by simply altering concentration or temperature. The synthetic procedure presented here is easy, inexpensive, straightforward, and user‐friendly.