首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recently Böhmer and Lobo have shown that a metric due to Florides, which has been used as an interior Schwarzschild solution, can be extended to reveal a classical singularity that has the form of a two-sphere. Here the singularity is shown to be a naked scalar curvature singularity that is both timelike and gravitationally weak. It is also shown to be a quantum singularity because the Klein–Gordon operator associated with quantum mechanical particles approaching the singularity is not essentially self-adjoint.  相似文献   

3.
A topological way to distinguish divergences of the Abelian axial-vector current in quantum field theory is proposed. By usirg the properties of the Atiyah-Singer index theorem, the non-trivial Jacobian factor of the integration measure in the path-integral formulation of the theory is connected with the topological properties of the gauge field. The singularity of the fermion current related to the topological character can be correctly examined in a gauge background.  相似文献   

4.
A topological way to distinguish divergences of the Abelian axial-vector current in quantum field theory is proposed. By using the properties of the Atiyah-Singer index theorem, the nomtrivial Jacobian factor of the integration measure in the path-integral formulation of the theory is connected with the topological properties of the gauge field. The singularity of the fermion current related to the topological character can be correctly examined in a gauge background.  相似文献   

5.
In classical general relativity, the generic approach to the initial singularity is very complicated as exemplified by the chaos of the Bianchi IX model which displays the generic local evolution close to a singularity. Quantum gravity effects can potentially change the behavior and lead to a simpler initial state. This is verified here in the context of loop quantum gravity, using methods of loop quantum cosmology: The chaotic behavior stops once quantum effects become important. This is consistent with the discrete structure of space predicted by loop quantum gravity.  相似文献   

6.
In a previous paper it was shown that the quantum consistency conditions for the dilaton-gravity theory of Callan et al., imply that the cosmological constant term undergoes a dilaton dependent renormalization, in such a manner that the theory can be written as a Liouville-like theory. In this paper we discuss the physical interpretation of the solutions of this theory. In particular we demonstrate explicitly how quantum corrections tame the black hole singularity. Finally we discuss Hawking radiation and find that it is asymptotically constant, but the value of the constant depends on an undetermined parameter.  相似文献   

7.
Abstract

The process of relativistic particle radiation in an external field has been studied in the semi-classical approximation rather extensively. The main problem arising in the studies is to express the formula of the quantum theory of radiation in terms of classical quantities, for example of the classical trajectories. However, it still remains unclear how the particle trajectory is assigned, that is which particular initial or boundary conditions determine the trajectory in semi-classical approximation quantum theory of radiation.

We shall try to solve this problem. Its importance comes from the fact that in some cases one and the same boundary conditions may give rise to two or more trajectories. We demonstrate that this fact must necessarily be taken into account on deriving the classical limit for the formulae of the quantum theory of radiation, since it leads to a specific interference effect in radiation.

The method we used to deal with the problem is similar to the method employed by Fock to analyze the problem of a canonical transformation in classical and quantum mechanics.  相似文献   

8.
9.
In its standard formulation, quantum mechanics presents a very serious inconvenience: given a quantum system, there is no possibility at all to unambiguously (causally) connect a particular feature of its final state with some specific section of its initial state. This constitutes a practical limitation, for example, in numerical analyses of quantum systems, which often make necessary the use of some extra assistance from classical methodologies. Here it is shown how the Bohmian formulation of quantum mechanics removes the ambiguity of quantum mechanics, providing a consistent and clear answer to such a question without abandoning the quantum framework. More specifically, this formulation allows to define probability tubes, along which the enclosed probability keeps constant in time all the way through as the system evolves in configuration space. These tubes have the interesting property that once their boundary is defined at a given time, they are uniquely defined at any time. As a consequence, it is possible to determine final restricted (or partial) probabilities directly from localized sets of (Bohmian) initial conditions on the system initial state. Here, these facts are illustrated by means of two simple yet physically insightful numerical examples: tunneling transmission and grating diffraction.  相似文献   

10.
In an earlier paper by one of us [K.-E. Hellwig (1981)], elements of discrete quantum stochastic processes which arise when the classical probability space is replaced by quantum theory have been considered. In the present paper a general formulation is given and its properties are compared with those of classical stochastic processes. Especially, it is asked whether such processes can be Markovian. An example is given and similarities to methods in quantum statistical thermodynamics are pointed out.  相似文献   

11.
We discuss the following problems, plaguing the present search for the “final theory”: (1) How to find a mathematical structure rich enough to be suitably approximated by the mathematical structures of general relativity and quantum mechanics? (2) How to reconcile nonlocal phenomena of quantum mechanics with time honored causality and reality postulates? (3) Does the collapse of the wave function contain some hints concerning the future quantum gravity theory? (4) It seems that the final theory cannot avoid the problem of dynamics, and consequently the problem of time. What kind of time, if this theory is supposed to be background free? (5) Will the dynamics of the “final theory” be probabilistic? Quantum probability exhibits some essential differences as compared with classical probability; are they but variations of some more general probabilistic measure theory? (6) Do we need a radically new interpretation of quantum mechanics, or rather an entirely new theory of which the present quantum mechanics is an approximation? (7) If the final theory is to be background free, it should provide a mechanism of space-time generation. Should we try to explain not only the generation of space-time, but also the generation of its material content? (8) As far as the existence of the initial singularity is concerned, one usually expects either “yes” or “not” answers from the final theory. However, if the mathematical structure of the future theory is supposed to be truly more general that the mathematical structures of the present general relativity and quantum mechanics, is a “third answer“ possible? Could this third answer be related to the probabilistic character of the final theory? We discuss these questions in the framework of a working model unifying gravity and quanta. The analysis reveals unexpected aspects of these rather wildly discussed issues.  相似文献   

12.
Several examples are known where quantum gravity effects resolve the classical big bang singularity by a bounce. The most detailed analysis has probably occurred for loop quantum cosmology of isotropic models sourced by a free, massless scalar. Once a bounce has been realized under fairly general conditions, the central questions are how strongly quantum it behaves, what influence quantum effects can have on its appearance, and what quantum space-time beyond the bounce may look like. This, then, has to be taken into account for effective equations which describe the evolution properly and can be used for further phenomenological investigations. Here, we provide the first analysis with interacting matter with new effective equations valid for weak self-interactions or small masses. They differ from the free scalar equations by crucial terms and have an important influence on the bounce and the space-time around it. Especially the role of squeezed states, which have often been overlooked in this context, is highlighted. The presence of a bounce is proven for uncorrelated states, but as squeezing is a dynamical property and may change in time, further work is required for a general conclusion.  相似文献   

13.
A critique of the causla and classical stochastic interpretations of nonrelativistic quantum mechanics is presented. The only way that the classical stochastic formulation can be made compatible with the theory of quantum measurement is to extend the probability measure density for fluctuating paths to the complex domain. In doing so, we obtain the generalized stochiastic formulation in which the methods of classical probability theory can be used to describe the quantum mechanical phenomenon of interfering alternatives. Illustrative examples from quantum theory are used to show the complete compatibility between the traditional and generalized stochastic interpretations of quantum mechanics. Work supported in part by a contribution from the CNR.  相似文献   

14.
The Kelvin–Helmholtz instability is modelled for inviscid and viscous fluids. Here, two bounded fluid layers flow parallel to each other with the interface between them growing in an unstable fashion when subjected to a small perturbation. In the various configurations of this problem, and the related problem of the vortex sheet, there are several phenomena associated with the evolution of the interface; notably the formation of a finite time curvature singularity and the ‘roll-up’ of the interface. Two contrasting computational schemes will be presented. A spectral method is used to follow the evolution of the interface in the inviscid version of the problem. This allows the interface shape to be computed up to the time that a curvature singularity forms, with several computational difficulties overcome to reach that point. A weakly compressible viscous version of the problem is studied using finite difference techniques and a vorticity-streamfunction formulation. The two versions have comparable, but not identical, initial conditions and so the results exhibit some differences in timing. By including a small amount of viscosity the interface may be followed to the point that it rolls up into a classic ‘cat’s-eye’ shape. Particular attention was given to computing a consistent initial condition and solving the continuity equation both accurately and efficiently.  相似文献   

15.
The problem of developing a formalism of quantum theory, which is both consistent with the reality of the measurements and with the invariance properties of relativistic theories, is considered. A solution is found by using a real formulation of quantum mechanics, such that there exists an interpretation of the real properties of a physical system at all times. It is demonstrated also that several concepts in quantum field theory can be recast in a real formalism. PACS: 03.65.Ca; 11.55.Ds.  相似文献   

16.
Quantum knitting     
We analyze the connections between the mathematical theory of knots and quantum physics by addressing a number of algorithmic questions related to both knots and braid groups. Knots can be distinguished by means of “knot invariants,” among which the Jones polynomial plays a prominent role, since it can be associated with observables in topological quantum field theory. Although the problem of computing the Jones polynomial is intractable in the framework of classical complexity theory, it has been recently recognized that a quantum computer is capable of approximating it in an efficient way. The quantum algorithms discussed here represent a breakthrough for quantum computation, since approximating the Jones polynomial is actually a “universal problem,” namely, the hardest problem that a quantum computer can efficiently handle.  相似文献   

17.
In this essay, we review first Mach's Principle and then the notion of an isotropic singularity. We give evidence to support a formulation of the cosmological part of Mach's Principle as the requirement that the initial singularity of space-time is an isotropic singularity, and we suggest that Mach's Principle may become a theorem of quantum gravity.  相似文献   

18.
19.
The formulation of quantum mechanics developed by Bohm, which can generate well-defined trajectories for the underlying particles in the theory, can equally well be applied to relativistic quantum field theories to generate dynamics for the underlying fields. However, it does not produce trajectories for the particles associated with these fields. Bell has shown that an extension of Bohm’s approach can be used to provide dynamics for the fermionic occupation numbers in a relativistic quantum field theory. In the present paper, Bell’s formulation is adopted and elaborated on, with a full account of all technical detail required to apply his approach to a bosonic quantum field theory on a lattice. This allows an explicit computation of (stochastic) trajectories for massive and massless particles in this theory. Also particle creation and annihilation, and their impact on particle propagation, is illustrated using this model.  相似文献   

20.
Absence of a singularity in loop quantum cosmology   总被引:5,自引:0,他引:5  
It is shown that the cosmological singularity in isotropic minisuperspaces is naturally removed by quantum geometry. Already at the kinematical level, this is indicated by the fact that the inverse scale factor is represented by a bounded operator even though the classical quantity diverges at the initial singularity. The full demonstration comes from an analysis of quantum dynamics. Because of quantum geometry, the quantum evolution occurs in discrete time steps and does not break down when the volume becomes zero. Instead, space-time can be extended to a branch preceding the classical singularity independently of the matter coupled to the model. For large volume the correct semiclassical behavior is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号