首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Ultrathin films, bcc Fe(001) on Ag(001), fcc Fe(001) on Cu(001) and Fe/Ni(001) bilayers on Ag, were grown by molecular beam epitaxy. A wide range of surface science tools were employed to establish the quality of epitaxial growth. Ferromagnetic resonance and Brillouin light scattering were used to extract the magnetic properties. Emphasis was placed on the study of magnetic anisotropies. Large uniaxial anisotropies with easy axis perpendicular to the film surface were observed in all ultrathin structures studied. These anisotropies were particularly strong in fcc Fe and bcc Fe films. In sufficiently thin samples the saturation magnetization was oriented perpendicularly to the film surface in the absence of an applied field. It has been demonstrated that in bcc Fe films the uniaxial perpendicular anisotropy originates at the film interfaces. In situ measurements indentified the strength of the uniaxial perpendicular anisotropy constant at the Fe/vacuum, Fe/Ag and Fe/Au interfaces asK us = 0.96, 0.63, and 0.3 ergs/cm2 respectively. The surface anisotropies deduced for [bulk Fe/noble metal] interfaces are in good agreement with the values obtained from ultrathin films. Hence the perpendicular surface ansiotropies originate in the broken symmetry at abrupt interfaces. An observed decrease in the cubic anisotropy in bcc Fe ultrathin films has been explained by the presence of a weak 4th order in-plane surface anisotropy,K 1S=0.012 ergs/cm2. Fe/Ni bilayers were also investigated. Ni grew in the pure bcc structure for the first 3–6 ML and then transformed to a new structure which exhibited unique magnetic properties. Transformed ultrathin bilayers possessed large inplane 4th order anisotropies far surpassing those observed in bulk Fe and Ni. The large 4th order anisotropies originate in crystallographic defects formed during the Ni lattice transformation.  相似文献   

5.
The temperature dependences of interfacial exchange coupling in Co/semiconductor (SM)/Fe trilayers (SM≡Si or Ge) with different spacer thicknesses are investigated. Only one step is found in the third (not in the first) quadrant of the hysteresis loop of the trilayers with different SM thicknesses, which is ascribed to a larger interfacial coupling strength of Co/CoGe (or Co/CoSi) than of Fe/FeGe (or Fe/FeSi). Furthermore, in comparison with Co/Ge/Fe, a smaller exchange bias field HE and no clear step are observed in Co/Si/Fe, which may originate from the weaker interfacial coupling in this trilayer. The variation of coercivity HC with spacer thickness at low temperatures in Co/Ge/Fe is different from that in Co/Si/Fe, indicating again the important effect of the SM layer in the trilayers.  相似文献   

6.
7.
8.
The structure and magnetism of ultrathin Fe films epitaxially grown on a Cu(001) surface are investigated by grazing scattering of fast H and He atoms or ions. By making use of a new variant of ion beam triangulation based on the detection of the number of emitted electrons, we obtain direct information on the structure of the film surface. We observe for room temperature growth a dominant and defined fcc-like structure. Complex surface reconstructions as reported in recent STM and LEED studies are observed only for cooling and H2 dosing.  相似文献   

9.
10.
11.
12.
13.
Up to 14 strong intensity oscillations of the specular beam in reflection high-energy electron diffraction (RHEED) have been observed during the epitaxial growth of face-centered (fcc) Fe on Cu(001) in the temperature range between 333–370 K. The amplitudes of these oscillations are strong even in the initial stages of growth. This provides evidence that the hetero-epitaxial growth of fcc Fe on Cu(001) proceeds predominantly layer-by-layer-like in that temperature regime. For growth at 300 K, initial Fe-bilayer-island formation followed by predominant layer-by-layer growth above 2 monolayers (ML) of Fe is observed. 3D growth prevails at ˜ 100 K.  相似文献   

14.
This article presents a review of the structural and magnetic properties of ultrathin epitaxial Fe films on GaAs(001) and related semiconductor substrates. Interest in these systems and Fe/GaAs(001) in particular has increased significantly over the last two decades, largely due to the emergence of the field of magnetoelectronics. Since then numerous studies of molecular beam epitaxy of Fe on GaAs(001) have been carried out, making it by far the best researched Fe/semiconductor(001) system. Issues such as magnetic anisotropy in the ultrathin regime, however, remain controversial with contradictory reports in the literature giving rise to considerable controversy within the field. By carefully scrutinizing the enormous amount of literature published on Fe/GaAs(001) so far and analysing these results within the wider context of Fe/semiconductor(001) systems, this article tries to settle some of these controversial issues, hence providing a long overdue ‘common denominator' for research in this area.  相似文献   

15.
We report an experimental approach to separate temperature dependent reversible and irreversible contributions to the perpendicular magnetic anisotropy of Fe films grown at low temperatures on Cu(001) substrates. The surface anisotropy K(S)(T) is found to decrease linearly with temperature, causing a thermally induced spin reorientation into the plane. The irreversible shift of the spin reorientation transition and the coercivity of the iron films are directly correlated to the increasing Fe island size during annealing. The increased coercivity is discussed in terms of domain wall energy inhomogeneities provided by the islands.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号