首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
氮是金刚石(包括天然金刚石和人工合成金刚石)中最普遍的杂质,长期以来广受研究者的关注. 人工合成出类似天然金刚石的具有较高氮含量的金刚石晶体是极富挑战性的研究课题. 本工作通过在合金溶剂和石墨碳源中添加含氮物质,利用温度梯度法在国产六面顶高压设备上合成出了系列大尺寸、高氮含量的宝石级金刚石单晶. 借助显微红外光谱,对合成的金刚石晶体中的氮含量进行了测定. 研究发现随着含氮物质添加量的提高晶体中氮含量基本呈线性增加. 最终合成出了氮含量高达1707 ppm的毫米级高氮含量金刚石单晶,以及最大尺寸达3.5 mm,氮含量达1520 ppm的绿色高氮宝石级金刚石单晶.  相似文献   

2.
One of the most important characteristics associated with crystal growth technology is the entrapment of inclusions by the growing crystal. Diamond single crystals prepared under high temperature-high pressure (HPHT) usually contain metallic inclusions. In the present paper, metallic inclusions in a diamond grown from a Fe-Ni-C system using the HPHT method have been, for the first time, systematically examined by transmission electron microscopy (TEM). Energy dispersive X-ray spectrometry (EDS) , combined with selected area electron diffraction (SAD) patterns, has been used to identify the chemical composition and crystal structure of the metallic inclusions. The metallic inclusions were found to be composed mainly of cubic γ-(FeNi), face-centered cubic (FeNi)23C6, ortho-rhombic Fe3C and hexagonal Ni3C, which may have been formed through the entrapment of molten catalyst by the growth front or through reaction of the trapped melt with contaminants in the diamond. Received: 19 June 2000 / Accepted: 21 June 2000 / Published online: 16 August 2000  相似文献   

3.
In this paper, diamond crystallization from carbonyl nickel powders-C and carbonyl nickel powders + Fe–C systems are investigated in detail at a pressure of 6.0 GPa and temperatures ranging from 1410°C–to 1435°C by temperature gradient growth. The effects of Fe additive on the crystal morphology are discussed in the diamond crystallization process.Furthermore, Fourier infrared measurement results indicate that the spectrum of the diamond obtained from Ni + Fe–C system after annealing treatment is nearly consistent with that of natural diamond crystal. We believe that this study is of benefit to a further understanding of the growth mechanism of natural diamond.  相似文献   

4.
周振翔  贾晓鹏  李勇  颜丙敏  王方标  房超  陈宁  李亚东  马红安 《物理学报》2014,63(24):248104-248104
利用温度梯度法,在6.2—6.4 GPa,1270—1400℃条件下,通过在NiMnCo-C体系中添加不同比例的锌粉成功合成出3 mm左右的大尺寸金刚石单晶.研究了锌添加对金刚石颜色、形貌、内部氮杂质以及晶体结晶度的影响.结果表明:随着锌添加量逐渐增加,晶体的颜色逐渐变浅,晶体的透光性增强;当锌添加比例达到3 wt.%时,晶体表面出现大量不规则的凹坑;晶体内氮杂质主要以C心形式存在,随着锌添加量的增多晶体内氮含量逐渐降低,基于锌的除氮能力总结出两种可能的除氮机制;拉曼光谱测试结果表明,在锌添加量小于3.0 wt.%的研究范围内,锌的添加有利于提高晶体的结晶度.本研究不仅有助于天然金刚石形成机制的探究,而且对丰富金刚石的种类以及扩展人工合成金刚石的应用领域都有着重要意义.  相似文献   

5.
以有限元法为理论分析手段模拟分析了温度梯度法合成宝石级金刚石大单晶的腔体温度场,实现了对宝石级金刚石的合成腔体内各位置温度同时测量.模拟结果表明:在宝石级金刚石合成过程中,其温度分布呈不均匀分布.腔体内高温区分布在样品(碳源+触媒)边缘,低温区分布在籽晶附近.样品腔内热量的传递方式和样品腔内的碳源输运方式相同,均由碳源的两侧向籽晶附近传输.籽晶附近轴向温度梯度大于径向温度梯度,导致单位时间内其轴向生长尺寸大于径向生长尺寸.宝石级金刚石腔体温度场分析的理论模型的成功构建,为新型宝石级金刚石腔体的研制提供了良好的设计基础,对促进优质宝石级金刚石的生长技术具有指导意义.  相似文献   

6.
李勇  李宗宝  宋谋胜  王应  贾晓鹏  马红安 《物理学报》2016,65(11):118103-118103
在压力6.0 GPa和温度1600 K条件下, 利用温度梯度法研究了(111)晶面硼氢协同掺杂Ib型金刚石的合成. 傅里叶红外光谱测试表明: 氢以sp3杂化的形式存在于所合成的金刚石中, 其对应的红外特征吸收峰位分别位于2850 cm-1和2920 cm-1处. 此外, 霍尔效应测试结果表明: 所合成的硼氢协同掺杂金刚石具有p型半导体材料特性. 相对于硼掺杂金刚石而言, 由于氢的引入导致硼氢协同掺杂金刚石电导率显著提高. 为了揭示硼氢协同掺杂金刚石电导率提高的原因, 对不同体系进行了第一性原理理论计算, 计算结果表明其与实验结果符合. 该研究对金刚石在半导体领域的应用有重要的现实意义.  相似文献   

7.
The inclusions in large diamond single crystals have effects on its ultimate performance, which restricts its industrial applications to a great extent. Therefore, it is necessary to study the inclusions systematically. In this paper, large diamond single crystals with different content values of inclusions are synthesized along the(100) surface by the temperature gradient method(TGM) under 5.6 GPa at different temperatures. With the synthetic temperature changing from 1200?C to 1270?C,the shapes of diamonds change from plate to low tower, to high tower, even to steeple. From the microscopic photographs of the diamond samples, it can be observed that with the shapes of the samples changing at different temperatures, the content values of inclusions in diamonds become zero, a little, much and most, correspondingly. Consequently, with the temperature growing from low to high, the content values of inclusions in crystals increase. The origin of inclusions is explained by the difference in growth rate between diamond crystal and its surface. The content values of inclusions in diamond samples are quantitatively calculated by testing the densities of diamond samples. And the composition and inclusion content are analyzed by energy dispersive spectroscopy(EDS) and x-ray diffraction(XRD). From contrasting scanning electron microscopy(SEM) photographs, it can be found that the more the inclusions in diamond, the more imperfect the diamond surface is.  相似文献   

8.
The prospects for use of CVD-technology for epitaxial growth of single-crystal diamond films of instrumental quality in UHF plasma for the production of optoelectronic devices are discussed. A technology for processing diamond single crystals that provides a perfect surface crystal structure with roughness less than 0.5 nm was developed. It was demonstrated that selective UV detectors based on synthetic single-crystal diamond substrates coated with single-crystal films can be produced. A criterion for selecting clean and structurally perfect single crystals of synthetic diamond was developed for the epitaxial growth technology.  相似文献   

9.
Large diamonds have successfully been synthesized from FeNiMnCo-S-C system at temperatures of 1255-1393 ℃and pressures of 5.3-5.5 GPa.Because of the presence of sulfur additive,the morphology and color of the large diamond crystals change obviously.The content and shape of inclusions change with increasing sulfur additive.It is found that the pressure and temperature conditions required for the synthesis decrease to some extent with the increase of S additive,which results in left down of the V-shape region.The Raman spectra show that the introduction of additive sulfur reduces the quality of the large diamond crystals.The x-ray photoelectron spectroscopy(XPS) spectra show the presence of S in the diamonds.Furthermore,the electrical properties of the large diamond crystals are tested by a four-point probe and the Hall effect method.When sulfur in the cell of diamond is up to 4.0 wt.%,the resistance of the diamond is 9.628×10~5 Ω·cm.It is shown that the large single crystal samples are n type semiconductors.This work is helpful for the further research and application of sulfur-doped semiconductor large diamond.  相似文献   

10.
11.
One of the most important characteristics and basic phenomena during diamond growth from liquid metal catalyst solutions saturated with carbon at high temperature–high pressure (HPHT) is that there exists a thin metallic film covering on the growing diamond, through which carbon-atom clusters are delivered to the surface of the growing diamond by diffusion. A study of microstructures of such a metallic film and a relation between the thin metallic film and the inclusions trapped in HPHT as-grown diamond single crystals may be helpful to obtain high-purity diamond single crystals. It was found that both the metallic film and the HPHT as-grown diamond single crystals contain some nanostructured regions. Examination by transmission electron microscopy suggests that the microstructure of the thin metallic film is in accordance with nanosized particles contained in HPHT as-grown diamond single crystals. The nanosized particles with several to several tens of nanometers in dimension distribute homogeneously in the metallic film and in the diamond matrix. Generally, the size of the particles in the thin metallic film is relatively larger than that within the diamond matrix. Selected area electron diffraction patterns suggest that the nanosized particles in the metallic film and nanometer inclusions within the diamond are mainly composed of f.c.c. (FeNi)23C6, hexagonal graphite and cubic γ-(FeNi). The formation of the nanosized inclusions within the diamond single crystals is thought not only to relate to the growth process and rapid quenching from high temperature after diamond synthesis, but also to be associated with large amounts of defects in the diamond, because the free energy in these defect areas is very high. The critical size of carbide, γ-(FeNi)and graphite particles within the diamond matrix should decrease and not increase according to thermodynamic theory during quenching from HPHT to room temperature and ambient pressure. Received: 13 September 2001 / Accepted: 12 June 2002 / Published online: 17 December 2002 RID="*" ID="*"Corresponding author. Fax: +86-0531/295-5081; E-mail: yinlw@sdu.edu.cn  相似文献   

12.
Reactive accelerated cluster erosion (RACE) of single crystal artificial diamond has been used to fabricate various nano- and microstructures. Carbondioxide clusters of about 1000 molecules are accelerated to 100 keV to act as the eroding agent. Using movable shadow masks, the accelerated cluster beam may erode staircase structures acting as an optical grating. A cycloid gear has been generated via a stationary nickel mask. Non-reactive accelerated cluster erosion using argon clusters will be considered for comparison. Received 30 November 2000  相似文献   

13.
耿传文  夏禹豪  赵洪阳  付秋明  马志斌 《物理学报》2018,67(24):248101-248101
利用微波等离子体化学气相沉积法,对单晶金刚石(100)晶面边缘进行精细切割抛光处理,形成偏离(100)晶面不同角度的倾斜面,在CH_4/H_2反应气体中进行同质外延生长,研究单晶金刚石边缘不同角度倾斜面对边缘金刚石外延生长的影响.实验结果表明,边缘倾斜面角度对边缘的单晶外延生长质量有影响,随着单晶金刚石边缘倾斜面角度的增大,边缘多晶金刚石数量先减少后增多,在倾斜角3.8°时边缘呈现完整的单晶外延生长特性.分析认为,边缘不同角度的倾斜面会改变周围电场强度和等离子体密度,导致到达衬底表面的含碳前驱物发生改变,倾斜面台阶表面的含碳前驱物浓度低于能形成层状台阶生长的临界浓度是减弱单晶金刚石生长过程中边缘效应的主要原因.  相似文献   

14.
In order to evaluate the charge collection efficiency (CCE) profile of single‐crystal diamond devices based on a p‐type/intrinsic/metal configuration, a lateral Ion Beam Induced Charge (IBIC) analysis was performed over their cleaved cross sections using a 2 MeV proton microbeam. CCE profiles in the depth direction were extracted from the cross‐sectional maps at variable bias voltage. IBIC spectra relevant to the depletion region extending beneath the frontal Schottky electrode show a 100% CCE, with a spectral resolution of about 1.5%. The dependence of the width of the high efficiency region from applied bias voltage allows the constant residual doping concentration of the active region to be evaluated. The region where the electric field is absent shows an exponentially decreasing CCE profile, from which it is possible to estimate the diffusion length of the minority carriers by means of a drift–diffusion model. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
为了拓展金刚石的种类和解决金刚石工具使用过程中因把持力不足造成的使用寿命降低等, 在中国式六面顶压机上, 通过对FeNi触媒成分和工艺的优化, 成功合成出高质量长径比大于2.5, 平均粒度在0.8—1.0 mm的柱状金刚石晶体. 该晶体独特的形貌, 将极大改善金刚石工具的在使用过程中出现的"脱粒"现象. 另外, 实验中发现, 柱状金刚石晶体的生长速度也远大于传统晶体的生长速度. 采用扫描电镜(SEM)和能谱(EDS)等手段对柱状金刚石晶体及晶体周围触媒成分进行了表征; 结果表明, 柱状金刚石晶体在生长过程中存在{100}和{111}晶面拉长, 以及包覆在晶体周围的触媒成分偏析. 在此基础上, 阐明了柱状晶体生长机理.  相似文献   

16.
We report the controllable growth of rice-shape nanoparticles of Alq3 by an extremely facile self-assembly approach. Possible mechanisms have been proposed to interpret the formation and controlled process of the single crystal nanoparticles. The field-emission performances (turn-on field 7 V μm−1, maximum current density 2.9 mA cm−2) indicate the potential application on miniaturized nano-optoelectronics devices of Alq3-based. This facile method can potentially be used for the controlled synthesis of other functional complexes and organic nanostructures.  相似文献   

17.
铝酸镧(LaAlO3)单晶是超导研究领域使用最普遍的单晶体之一,详细介绍了采用下称重,CZ法(Czo-chralski)生长大尺寸(Φ80mm)LaAlO3单晶的工艺条件,并对影响晶体质量的主要因素进行了分析、讨论,给出了解决晶体质量问题的手段和有效途径。  相似文献   

18.
An erbium doped K0.603Li0.397Ta0.428Nb0.572O3 single crystal was grown by the step-cooling technique. The crystal has a tetragonal tungsten bronze-type structure at room temperature with a Curie temperature of 303°C. There are Er ions characteristic absorption bands around 449, 485, 521, 550, and 652 nm in the visible absorption spectrum. Upconversion fluorescence spectra and power dependence centered at 527 nm, 548 nm, and 660 nm under 975 nm excitation were measured at room temperature. Decay lifetimes of the 548 nm and 660 nm emission bands are 281 μs and 420 μs, respectively. The lifetime of the 548 nm emission corresponding to the transition of ?4 S 3/24 I 15/2 is ten times the lifetime of the same transition of Er3+ in LiNbO3 crystal and twice in KYb(WO4)2 crystal. The crystal might become a promising upconversion laser material. The upconversion mechanism of Er3+ in the sample was discussed based on decay curves and pump power dependence analyses in this work.  相似文献   

19.
Friction properties of cluster-eroded surfaces of synthetic single crystal diamond (Monodite) are compared after erosion with high-speed CO2 cluster beams as well as with corresponding Ar cluster beams, the cluster impact kinetic energy being 100 keV in both cases. The respective friction values are determined by atomic force microscope measurements. Using CO2 clusters, the reactive accelerated cluster erosion (RACE) of the single crystal diamond substrates leads to more than seven times higher friction values than those observed after erosion with non-reactive accelerated Ar clusters. Molecular dynamics calculations reveal related differences in the simulations of respective single cluster impacts already at 2 ps after impact.  相似文献   

20.
The large single-crystal diamond with FeS doping along the(111) face is synthesized from the FeNi–C system by the temperature gradient method(TGM) under high-pressure and high-temperature(HPHT). The effects of different FeS additive content on the shape, color, and quality of diamond are investigated. It is found that the(111) face of diamond is dominated and the(100) face of diamond disappears gradually with the increase of the FeS content. At the same time, the color of the diamond crystal changes from light yellow to gray-green and even gray-yellow. The stripes and pits corrosion on the diamond surface are observed to turn worse. The effects of FeS doping on the shape and surface morphology of diamond crystal are explained by the number of hang bonds in different surfaces of diamond. It can be shown from the test results of the Fourier transform infrared(FTIR) spectrum that there exists an S element in the obtained diamond. The N element content values in different additive amounts of diamond are calculated. The XPS spectrum results demonstrate that our obtained diamond contains S elements that exist in S–C and S–C–O forms in a diamond lattice. This work contributes to the further understanding and research of FeS-doped large single-crystal diamond characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号