首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large eddy simulations (LES) for turbulent flames with detailed kinetic mechanisms have received growing interest. However, a direct implementation of detailed kinetic mechanisms in LES modelling of turbulent combustion remains a challenge due to the requirement of huge computational resources. An on-the-fly mechanism reduction method named correlated dynamic adaptive chemistry (CoDAC) is proposed to overcome this issue. A LES was conducted for Sandia Flame-D, with the reaction mechanism of GRI-Mech 3.0 consisting of 53 species and 325 reactions. The reduction threshold used in LES was obtained a priori by using auto-ignition model and partially stirred reactor (PaSR) with pairwise mixing model. LES results with CoDAC are in good agreement with experimental data and those without reduction. The conditional mean of the number of selected species indicates that a large size of locally reduced mechanism is required in the reaction zone where CH4 is destructed. A computational time analysis shows that the PaSR model predicts better than the auto-ignition model on the wall time reduction with CoDAC in LES.  相似文献   

2.
Rotating turbulence occurs extensively in nature and engineering circumstances. Meanwhile, understanding physical mechanisms of the rotating turbulence is important to the fundamental research of turbulence. The turbulent flow in rotating frames undergoes two kinds of Coriolis force effects. First, a secondary flow is induced in the case that there is a mean vorticity component perpendicular to the rotating axis. Second, there are augmenting or suppressing effects on the turbulence if there i…  相似文献   

3.
A moderate Reynolds number,and high subsonic turbulent round jet is investigated by large eddy simulation.The detailed results(e.g.mean flow properties,turbulence intensities,etc.)are validated against the experimental data,and special attention is paid to study motions of coherent structures and their contributions to far-field noise.Eulerian methods(e.g.Q-criteria andλ2criteria)are utilized for visualizing coherent structures directly for instantaneous flow fields,and Lagrangian coherent structures accounting for integral effect are shown via calculating fields of finite time Lyapunov exponents based on bidimensional velocity fields.All visualizations demonstrate that intrusion of three-dimensional vortical structures into jet core occurs intermittently at the end of the potential core,resulting from the breakdown of helical vortex rings in the shear layer.Intermittencies in the shear layer and on the centerline are studied quantitatively,and distinctively different distributions of probability density function are observed.Moreover,the physical sound sources are obtained through a filtering operation of defined sources in Lighthill’s analogy,and their distributions verify that intrusion of vortical structures into the core region serves as important sound sources,in particular for noise at aft angles.The facts that intermittent behaviors are caused by motions of coherent structures and correlated with noise generation imply that to establish reasonable sound sources in active noise production region based on intermittent coherent structures is one of the key issues for far-field noise prediction.  相似文献   

4.
《Physics letters. A》2019,383(18):2159-2167
In this letter, we proposed a novel individual-based dynamical model to study failure propagation in power system. In this model, a transmission line fails with a probability related to additional load transferred by other failed lines, where load upon failure of power lines is based on global and equal redistribution. Besides, the line recovers with a certain probability, and the failure levels of lines is depicted as a probability rather than a Boolean value subject to the mean-field theory. Based on this model, the outbreak threshold of the power system was analyzed. We gave the mathematical expression of the threshold for the outbreak of power failure scale and conducted simulation experiments to verify the theoretical value. Additionally, we discussed the optimal load shedding problem to minimize the objective function related to the cost of failure and load shedding. Lastly, the numerical simulations were provided to illustrate our theoretical results.  相似文献   

5.
LES of spatially developing turbulent boundary layer over a concave surface   总被引:1,自引:0,他引:1  
We revisit the problem of a spatially developing turbulent boundary layer over a concave surface. Unlike previous investigations, we simulate the combined effects of streamline curvature as well as curvature-induced pressure gradients on the turbulence. Our focus is on investigating the response of the turbulent boundary layer to the sudden onset of curvature and the destabilising influence of concave surface in the presence of pressure gradients. This is of interest for evaluating the turbulence closure models. At the beginning of the curve, the momentum thickness Reynolds number is 1520 and the ratio of the boundary layer thickness to the radius of curvature is δ0/R = 0.055. The radial profiles of the mean velocity and turbulence statistics at different locations along the concave surface are presented. Our recently proposed curvature-corrected Reynolds Averaged Navier-Stokes (RANS) model is assessed in an a posteriori sense and the improvements obtained over the base model are reported. From the large Eddy simulation (LES) results, it was found that the maximum influence of concave curvature is on the wall-normal component of the Reynolds stress. The budgets of wall-normal Reynolds stress also confirmed this observation. At the onset of curvature, the effect of adverse pressure gradient is found to be predominant. This decreases the skin friction levels below that in the flat section.  相似文献   

6.
A theoretical model of turbulent fiber suspension is developed by deriving the equations of Reynolds averaged Navier-Stokes,turbulence kinetic energy and turbulence dissipation rate with the additional term of fibers.In order to close the above equations,the equation of probability distribution function for mean fiber orientation is also derived.The theoretical model is applied to the turbulent channel flow and the corresponding equations are solved numerically.The numerical results are verified by comparisons with the experimental ones.The effects of Reynolds number,fiber concentration and fiber aspect-ratio on the velocity profile,turbulent kinetic energy and turbulent dissipation rate are analyzed.Based on the numerical data,the expression for the velocity profile in the turbulent fiber suspension channel flow,which includes the effect of Reynolds number,fiber concentration and aspect-ratio,is proposed.  相似文献   

7.
A turbulent piloted jet flame subject to a rapid velocity pulse in its fuel jet inflow is proposed as a new benchmark case for the study of turbulent combustion models. In this work, we perform modelling studies of this turbulent pulsed jet flame and focus on the predictions of its flow and turbulence fields. An advanced modelling strategy combining the large eddy simulation (LES) and the probability density function (PDF) methods is employed to model the turbulent pulsed jet flame. Characteristics of the velocity measurements are analysed to produce a time-dependent inflow condition that can be fed into the simulations. The effect of the uncertainty in the inflow turbulence intensity is investigated and is found to be very small. A method of specifying the inflow turbulence boundary condition for the simulations of the pulsed jet flame is assessed. The strategies for validating LES of statistically transient flames are discussed, and a new framework is developed consisting of different averaging strategies and a bootstrap method for constructing confidence intervals. Parametric studies are performed to examine the sensitivity of the predictions of the flow and turbulence fields to model and numerical parameters. A direct comparison of the predicted and measured time series of the axial velocity demonstrates a satisfactory prediction of the flow and turbulence fields of the pulsed jet flame by the employed modelling methods.  相似文献   

8.
The output from a direct numerical simulation (DNS) of turbulent channel flow at Reτ ≈ 1000 is used to construct a publicly and Web services accessible, spatio-temporal database for this flow. The simulated channel has a size of 8πh × 2h × 3πh, where h is the channel half-height. Data are stored at 2048 × 512 × 1536 spatial grid points for a total of 4000 time samples every 5 time steps of the DNS. These cover an entire channel flow-through time, i.e. the time it takes to traverse the entire channel length 8πh at the mean velocity of the bulk flow. Users can access the database through an interface that is based on the Web services model and perform numerical experiments on the slightly over 100 terabytes (TB) DNS data on their remote platforms, such as laptops or local desktops. Additional technical details about the pressure calculation, database interpolation, and differentiation tools are provided in several appendices. As a sample application of the channel flow database, we use it to conduct an a-priori test of a recently introduced integral wall model for large eddy simulation of wall-bounded turbulent flow. The results are compared with those of the equilibrium wall model, showing the strengths of the integral wall model as compared to the equilibrium model.  相似文献   

9.
Frank O. Goodman   《Surface science》1987,180(2-3):477-488
Considerations of application of a continuum model of a solid with a free surface to particle-surface interaction theory are presented. The work is based on the recent normal-mode analysis of such a model by the author. It is shown that the model has some important unrealistic properties which do not occur in discrete-lattice models, and it is concluded that considerable care is needed in interpreting some of the predictions of the model, particularly with regard to the importance of normal modes of the non-bulk type, for example surface modes.  相似文献   

10.
A free triangular jet(TJ1) and its counterpart initially passing a short circular chamber(TJ2) are numerically modeled using large eddy simulation(LES). This paper compares the near-field characteristics of the two jets in detail. To enable some necessary experimental validations, the LES conditions of TJ1 and TJ2 are taken to be identical to those measured by Xu et al.(Sci. China Phys. 56 1176(2013)) and England et al.(Exp. Fluids. 48 69(2010)), respectively. The LES predictions are found to agree well with those measurements. It is demonstrated that a strong swirl occurs near the chamber inlet plane for the TJ2 flow. At the center of the swirl, there is a cluster of three sink foci, where each focus is aligned midway between the original triangular apexes. In the vortex skeleton constructed from the time-averaged flow field, the vortices arising from the foci are helically twisted around the core of the jet. As the flow passes through the chamber, the foci merge to form a closed-loop "bifurcation line", which separates the inward swirling flow and the outward oscillating jet. This global oscillation is regarded as a source node near the centerline of the chamber. If the chamber is removed for a"free" jet, i.e., TJ1, a cluster of three pairs of counter-rotating foci is produced and the net swirl circulation is zero, so the overall oscillation of the jet does not occur.  相似文献   

11.
12.
An a priori study based on direct numerical simulation (DNS) of a non-isothermal turbulent plane jet has been carried out in order to analyse the role of the small-scales of turbulence on thermal radiation. Filtered DNS and large eddy simulation (LES) without subgrid-scale (SGS) model have been estimated for the radiative heat transfer. The comparison of the results highlights the subgrid-scale influence over the filtered radiation quantities, such as the radiative intensity and the radiative emission. The influence of the optical thickness is also studied. It is shown that the subgrid-scales are not significant near the centerline of the jet, where the radiative heat transfer is more important, and therefore that the SGS can be neglected in this configuration. However, when the optical thickness increases, the SGS become relevant and SGS modeling may be needed.  相似文献   

13.
Large eddy simulation (LES) is conducted of the Sandia Flame D [Proc. Combust. Inst. 27 (1998) 1087, Sandia National Laboratories (2004)], which is a turbulent piloted nonpremixed methane jet flame. The subgrid scale (SGS) closure is based on the scalar filtered mass density function (SFMDF) methodology [J. Fluid Mech. 401 (1999) 85]. The SFMDF is basically the mass weighted probability density function (PDF) of the SGS scalar quantities [Turbulent Flows (2000)]. For this flame (which exhibits little local extinction), a simple flamelet model is used to relate the instantaneous composition to the mixture fraction. The modelled SFMDF transport equation is solved by a hybrid finite-difference/Monte Carlo scheme. This is the first LES of a realistic turbulent flame using the transported PDF method as the SGS closure. The results via this method capture important features of the flame as observed experimentally.  相似文献   

14.
15.
袁子东  高军  曹祥玉  杨欢欢  杨群  李文强  商楷 《物理学报》2014,63(1):14102-014102
设计了一种基于分形树结构的高性能频率选择表面(frequency selective surface,FSS),并将其作为微带天线的空间滤波器,同时改善天线的辐射与散射性能.该FSS单元是由两层金属及其中间介质组成,上、下层金属采用金属柱连结,整体构成树枝状分形结构.通过优化参数,得到了一种宽带、极化无关、宽入射角、小型化的超薄FSS,厚度只有约0.017λ.将该FSS应用于微带天线后,天线的相对带宽拓展到40%,工作频段内的增益得到改善,9.6 GHz时,天线的增益提高了6.7 dB,同时,天线工作频带内的雷达散射截面(radar cross section,RCS)也得到了明显减缩,最大减缩为12.7 dB.实验结果与仿真结果符合得较好,证实了该空间滤波器具有提高宽带天线增益、增强天线定向性、改善天线带宽与降低天线带内RCS的效果,可以应用于宽带天线带内辐射与散射性能的同时改善.  相似文献   

16.
Critical phenomena ind-dimensional ferromagnetic spherical models on hypercubic lattices with free surfaces are studied. The surface specific heat and surface susceptibilities are obtained. The exponents characterizing the divergence of these surface quantities at the bulk critical temperature are found to satisfy recently proposed scaling relations. The variation of the susceptibility with distance from the surface is also discussed. The author's recent scaling theory for surface properties is investigated in detail, and found to give an exact representation for the free energy of a three-dimensional spherical model of finite thickness in finite bulk and surface magnetic fields. A scaling form for the surface free energy is derived.  相似文献   

17.
The turbulence properties of a gas spray jet generated through the injection of a high-pressure atomising spray were studied in the context of the Euler–Lagrange formulation using a large eddy simulation (LES) approach. The study's main aim was to investigate nozzle flow effects on flow and turbulence statistics for a two-phase jet flow in the near and far fields of the spray. The study investigated the injection of an existing in-nozzle flow at the spray inlet. Simulation results were compared with measurements obtained for non-evaporating sprays under quasi-steady conditions, which, in practice, correspond to a long-duration injection. Both simulated high-injection pressure cases showed a good agreement with experimental data. A two-stage evolution of the spray was observed. The flow of the gas jet first developed along the spray cone, followed by the appearance of highly vortical structures around and within the spray. Cavitation in the nozzle flow resulted in an observed asymmetry of the generated gas spray jet: on the gas spray jet side of the nozzle (relative to the cavitation side), stronger jet spreading occurred, and droplets were smaller and slower. The spray jet typically exhibited an ellipsoidal cross-sectional shape. The paper provides a characterisation of the asymmetry that persisted for the duration of the spray evolution (at least for the distances considered here).  相似文献   

18.
Most simulation methods for compressible flow attain numerical stability at the cost of swamping the fine turbulent flow structures by artificial dissipation. This article demonstrates that numerical stability can also be attained by preserving conservation laws at the discrete level. A new mathematical explanation of conservation in compressible flow reveals that many conservation properties of convection are due to the skew-symmetry of the convection operator. By preserving this skew-symmetry at the discrete level, a fourth-order accurate collocated symmetry-preserving discretisation with excellent conservation properties is obtained. Also a new symmetry-preserving regularisation subgrid-scale model is proposed. The proposed techniques are assessed in simulations of compressible turbulent channel flow. The symmetry-preserving discretisation for compressible flow has good stability without artificial dissipation and yields acceptable results already on coarse grids. Regularisation does not consistently improve upon no-model results, but often compares favourably with eddy-viscosity models.  相似文献   

19.
The subgrid-scale dynamics of stratified flows is studied in a horizontally introduced turbulent jet with coexistence of stable and unstable stratification of a low Richardson number case and a high Richardson number case. The positive production of subgrid-scale kinetic energy and the production of scalar variance suggest the forward energy cascade. The subgrid-scale buoyant destruction plays a role as a sink of subgrid-scale kinetic energy in the stable stratification while holds a role of turbulent generation in the unstable stratification. The role-switch of buoyant destruction in the stable stratification of high-Ri case implies the occurrence of a destabilising process triggered by the coupled instability mechanisms. The energy balance assumption related to the production of and the dissipation of subgrid-scale kinetic energy as well as the subgrid-scale buoyant destruction may fail. The a-priori test suggests the scale-invariant dynamic and standard Smagorinsky models not to work properly here, while the scale-dependent dynamic model gives a decent performance but with restrictions of the ratio between two testing filter scales.  相似文献   

20.
We discuss continuous cascade models and their potential for modelling the energy dissipation in a turbulent flow. Continuous cascade processes, expressed in terms of stochastic integrals with respect to Lévy bases, are examples of ambit processes. These models are known to reproduce experimentally observed properties of turbulence: the scaling and self-scaling of the correlators of the energy dissipation and of the moments of the coarse-grained energy dissipation. We compare three models: a normal model, a normal inverse Gaussian model, and a stable model. We show that the normal inverse Gaussian model is superior to both, the normal and the stable models, in terms of reproducing the distribution of the energy dissipation; and that the normal inverse Gaussian model is superior to the normal model and competitive with the stable model in terms of reproducing the self-scaling exponents. Furthermore, we show that the presented analysis is parsimonious in the sense that the self-scaling exponents are predicted from the one-point distribution of the energy dissipation, and that the shape of these distributions is independent of the Reynolds number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号