首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
eN方法基于扰动在边界层中线性演化过程中的幅值增长程度来预测转捩。以来流Mach数为6、不同壁面温度条件下不同钝度圆锥为研究对象,结合直接数值模拟和抛物化稳定性方程,从eN方法是否能够准确描述扰动在上述边界层中线性增长的角度,分析了该方法预测转捩的可靠性。研究结果表明,在小钝度或高壁面温度情况下,扰动在向下游的演化过程中从第1模态转变为第2模态,基于线性稳定性理论的eN方法变得不再可靠。壁面温度相同,头部钝度越大,eN方法越可靠;同等钝度下,壁面温度越低,eN方法越可靠。由于存在模态转换时,线性稳定性理论总是低估扰动的增长,因而对于给定的转捩判据NT(可由某一工况实验标定给出),若钝度减小或壁面温度增加到一定程度,eN方法给出的转捩位置比实际情况更靠后。重新标定转捩判据时,钝度越小,壁面温度越高,NT的修正程度就越大。   相似文献   

2.
高超声速条件下7°直圆锥边界层转捩实验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
刘小林  易仕和  牛海波  陆小革  赵鑫海 《物理学报》2018,67(17):174701-174701
在Ma=6低噪声风洞中开展了半锥角7?的直圆锥边界层转捩相关实验研究.利用响应频率达到MHz量级的高频压力传感器对圆锥壁面脉动压力进行了测量,研究了高超声速圆锥边界层中扰动波的发展过程.结果表明:高超声速圆锥边界层中第二模态扰动波产生的位置以及扰动波特征频率和波长等参数受雷诺数影响较大,当单位雷诺数从2×106m~(-1)增加到8×106m~(-1)时,第二模态波的特征频率从55 k Hz增加到226 k Hz;随着单位雷诺数增加,边界层中扰动增长速度加快,第二模态波出现在圆锥表面更靠近上游的位置;相同单位雷诺数条件下,随着第二模态波的向下游传播,其特征频率逐渐减小.通过对比发现自由来流湍流度对边界层中扰动波的发展同样有较大影响,自由来流湍流度降低,边界层中的第二模态波的特征频率明显减小.利用互相关分析得出第二模态扰动波在边界层中的传播速度大约为当地主流速度的0.8—0.9倍.在1?小攻角条件下,圆锥迎风面和背风面边界层发展呈现出明显的差异,背风面边界层中扰动发展提前,第二模态波出现在更靠近上游的位置,而迎风面中扰动发展受到抑制,第二模态波特征频率更大.  相似文献   

3.
The evolution of 2-D disturbances in hypersonic boundary layer with Mach number 6,8, and 10 was investigated numerically by three different numerical schemes. At the entrance, second mode T-S waves with different amplitudes were introduced, and the relation between the Mach number and the amplitude of the disturbance when shocklets started to appear was investigated. By comparing the disturbance velocity profiles with those provided by linear stability theory, the effects of shocklets on flow structures were also investigated.  相似文献   

4.
沈露予  陆昌根 《物理学报》2018,67(18):184703-184703
边界层感受性问题是层流向湍流转捩的初始阶段,是实现边界层转捩预测和控制的关键环节.目前已有的研究成果显示,在声波扰动或涡波扰动作用下前缘曲率变化对边界层感受性机制有着显著的影响.本文采用直接数值模拟方法,研究了在自由来流湍流作用下具有不同椭圆形前缘平板边界层感受性问题,揭示椭圆形前缘曲率变化对平板边界层内被激发出Tollmien-Schlichting (T-S)波波包的感受性机制以及波包向前传播群速度的影响;通过快速傅里叶分析方法从波包中提取获得了不同频率的T-S波,详细分析了前缘曲率变化对不同频率的T-S波的幅值、色散关系、增长率、相速度以及形状函数的作用;确定了前缘曲率在平板边界层内激发T-S波的感受性过程中所占据的地位.通过上述研究能够进一步认识和理解边界层感受性机制,从而丰富和完善了流动稳定性理论.  相似文献   

5.
We have examined, both experimentally (using fully controlled disturbances) and theoretically, the weakly-nonlinear development stages of unsteady (in general) Görtler instability of a boundary layer over a concave surface. Primary attention was given to early manifestations of nonlinearity in the development of unsteady Görtler vortices belonging to the first, most rapidly growing, mode in the discrete spectrum of the stability problem. We have investigated the manifestations of instability versus the frequency of the fundamental (primary) Görtler mode and the initial disturbance amplitude. The weakly-nonlinear stage of development of unsteady Görtler vortices was found to display the following characteristic features: (a) nonlinear interaction among the combination modes in the frequency-wavenumber spectrum, (b) distortion of the wall-normal profiles of disturbance amplitudes and phases, (c) reduction of the growth rate of the fundamental Görtler mode and the majority of combination modes, and (d) a decrease in the phase velocities of unsteady disturbances. It was found that the disturbances enter the region of weakly-nonlinear development after the amplitude of the fundamental frequency-wavenumber mode reaches a threshold of 4–6 %, this value being much greater than that for Tollmien — Schlichting waves (1–2 %) but significantly lower than that for the cross-flow instability modes in three-dimensional boundary layer (more than 10 %).  相似文献   

6.
刘小林  易仕和  牛海波  陆小革 《物理学报》2018,67(21):214701-214701
在马赫数6、单位雷诺数3.1×106/m的条件下对半锥角7°直圆锥边界层稳定性开展了实验研究.以激光聚焦于流场中局部空间而产生的膨胀冲击波作为人工添加的小扰动,分析了该扰动对高超声速圆锥边界层流动稳定性的影响.实验中利用响应频率达到兆赫兹量级的高频压力传感器对圆锥壁面脉动压力进行测量,通过对压力数据进行短时傅里叶分析和功率谱分析发现,相比于不添加激光聚焦扰动的结果,添加激光聚焦扰动使边界层中第二模态波的出现位置提前,且扰动波的幅值大幅度地增加,在相同的流向范围内,激光聚焦扰动将边界层中的扰动波从线性发展阶段推进到非线性发展阶段,其对边界层中扰动波发展的促进效果明显.同时,激光聚焦位置的不同对边界层中扰动波的发展也具有不同的影响.当激光直接聚焦于圆锥壁面X=100 mm位置时,边界层中频率为90 kHz的扰动波幅值增长最快,在X=500 mm的位置处其幅值放大倍数为3.81,相比而言当激光聚焦位置位于圆锥前方自由来流中时,边界层幅值增长最快的扰动波频率大幅减小为73 kHz,相同范围内,其幅值放大倍数为4.51倍.由此可见,当激光聚焦位置位于圆锥上游的自由来流中时,其对边界层中扰动波的影响更为显著.  相似文献   

7.
刘强  罗振兵  邓雄  杨升科  蒋浩 《物理学报》2017,66(23):234701-234701
为了探究超声速边界层流动稳定性及其转捩控制机理,提出基于合成冷/热射流的边界层速度-温度耦合控制方法,并通过数值模拟研究了Ma=4.5超声速平板边界层不稳定波的传播,采用线性稳定性理论中的时间模式分析了壁面吹吸、射流温度、扰动频率、扰动振幅等对不稳定波控制效果的影响.结果表明:无射流控制时,边界层内同时存在不稳定的第一模态扰动波和第二模态扰动波,且二维波形式的第二模态占主导地位;壁面吹吸作用下,仅出现更加不稳定的第二模态,第一模态被抑制;速度-温度耦合控制下,射流温度对扰动模态的不稳定区域大小及扰动增长率影响显著,射流温度与来流温度不同时,温度的脉动使得流动转捩为湍流的速度加快,边界层速度型更加饱满,抗干扰能力增强,流动稳定性提高;高频的吹吸扰动对流场的控制效果优于低频扰动,扰动频率超过400 Hz时,第二模态扰动波时间增长率降低,扰动分量对边界层速度剖面和温度剖面的修正加快,第二模态更加稳定;扰动振幅减小为主流速度的1%时,仅出现时间增长率较小的第二模态,控制效果较好,进一步减小时,第一模态重新出现,并且波数范围与第二模态先重合后分离,对应的时间增长率先增加后减小.研究结果为边界层转捩控制技术提供了新的思路.  相似文献   

8.
The problem of transition prediction for hypersonic boundary layers over a sharp cone has been studied in this work. The Mach number of the oncoming flow is 6, the cone half-angle is 5°, and the angle of attack is 1°. The conventional e N method is used, but the transition location so obtained is obviously incorrect. The reason is that in the conventional method, only the amplifying waves are taken into account, while in fact, for different meridians the decay processes of the disturbances before they begin to grow are different. Based on our own previous work, new interpretation and essential improvement for the e N method are proposed. Not only the amplification process but also the decay process is considered. The location, where by linear stability theory, the amplitude of disturbance wave is amplified from its initial small value to 1%, is considered to be the transition location. The new result for transition prediction thus obtained is found to be fairly satisfactory. It is also indicated that for the calculation of base flow, boundary layer equations can be used for a small angle of attack. Its computational cost is much smaller than those for DNS. Supported by the National Natural Science Foundation of China (Grant Nos. 10632050 and 90716007), the Special Foundation for the Authors of National Excellent Doctoral Dissertations (Grant No. 200328), and the Foundation of Liu-Hui Center of Applied Mathematics of Nankai University and Tianjin University  相似文献   

9.
殷建伟  潘昊  吴子辉  郝鹏程  胡晓棉 《物理学报》2017,66(7):74701-074701
研究了冲击波加载弹塑性材料扰动自由面的动力学演化过程,分析了高能炸药爆轰驱动时初始扰动与材料性质对扰动增长的影响.研究结果表明:初始扰动的振幅与波长之比越高,扰动越易增长,强度越高的材料扰动增长幅度越小;扰动增长被抑制时,尖钉的最大振幅与增长速度无量纲数之间存在线性近似关系,进一步理论分析表明尖钉的振幅增长因子与加载压力、初始扰动形态和材料强度有关,该理论关系作为扰动增长规律的线性近似在一定范围内适用于多种金属材料.  相似文献   

10.
When a boundary layer starts to develop spatially over a flat plate, only disturbances of sufficiently large amplitude survive and trigger turbulence subcritically. Direct numerical simulation of the Blasius boundary-layer flow is carried out to track the dynamics in the region of phase space separating transitional from relaminarizing trajectories. In this intermediate regime, the corresponding disturbance is fully localized and spreads slowly in space. This structure is dominated by a robust pair of low-speed streaks, whose convective instabilities spawn hairpin vortices evolving downstream into transient disturbances. A quasicyclic mechanism for the generation of offspring is unfolded using dynamical rescaling with the local boundary-layer thickness.  相似文献   

11.
朱志斌  冯峰  沈清 《气体物理》2022,7(3):60-72
横流效应显著影响高超声速飞行器的三维边界层转捩过程, 深化对该流动机制的认识有助于提升和改善飞行器气动性能及热力学环境. 针对HIFiRE5椭圆锥绕流问题, 采用大涡模拟方法计算分析了超声速边界层横流转捩特性, 并揭示其中的流动机理. 参考HIFiRE5风洞模型试验条件, 数值模拟中椭圆锥来流入口处施加人工速度扰动以激发边界层内不稳定扰动波, 进而预测了高超声速边界层流动横流失稳、转捩过程等基本流动特征, 并基于转捩热流分布形态对比, 获得了与试验数据基本吻合的计算结果. 研究发现, 椭圆锥中心线流动汇聚形成的流向涡结构非常容易失稳, 另外在中心线及侧缘之间的中部区域存在较强的横流不稳定性, 两种机制共同作用影响边界层转捩过程. 此外, 分析了来流扰动幅值对边界层横流失稳转捩的影响, 并发现静来流条件下, 横流区域出现两组独立的定常横流涡结构, 而强噪声来流条件下, 中心线主涡和中部横流涡均发生失稳转捩, 且在椭圆锥表面形成多峰状的转捩阵面. 最后, 深入分析流场的压力脉动动力学特性, 揭示了三维边界层发生失稳转捩的非线性演化机制.   相似文献   

12.
随机扰动对拟小波方法求解对流扩散方程的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
引进拟小波方法数值求解对流扩散方程,研究结果表明,计算带宽W有一个极值,当计算带宽W取该极值时,该方程的拟小波解的精度最高,且好于迎风格式。当边界发生随机不等幅扰动时,对于积分时间较长的情况,拟小波格式的效果要稍逊于迎风格式;当边界发生随机等幅扰动时,若计算带宽W取大于等于20的整数时,方程拟小波解的精度与迎风格式相同;当参数受到随机扰动时,W取10时的拟小波解的均方根误差要小于迎风格式;在初值发生随机扰动且计算带宽W取10时,方程的拟小波解的精度最高,好于迎风格式。  相似文献   

13.
An analysis is presented of a linear mechanism of surface gravity wave generation in a horizontally sheared flow in a fluid layer with free boundary. A free-surface flow of this type is found to be algebraically unstable. The development of instability leads to the formation of surface gravity waves whose amplitude grows with time according to a power law. Flow stability is analyzed by using a nonmodal approach in which the behavior of a spatial Fourier harmonic of a disturbance is considered in a semi-Lagrangian frame of reference moving with the flow. Shear-flow disturbances are divided into two classes (wave and vortex disturbances) depending on the value of potential vorticity. It is shown that vortex disturbances decay with time while the energy of wave disturbances increases indefinitely. Transformation of vortex disturbances into wave ones under strong shear is described.  相似文献   

14.
S. M. Schmalholz† 《哲学杂志》2013,93(21-22):3393-3407
The amplification of viscous single-layer folds, from infinitesimal amplitudes up to finite amplitudes and large strains, is investigated analytically. Analytical solutions for finite amplitude folding of viscous layers valid for large viscosity contrasts and for post-buckling of elastic columns are shown to be identical. The failure of the classical, exponential amplification solution for folding is quantified using a nonlinear amplification equation similar to the Landau equation. The evolution of fold amplitude–strain for single layers with different initial amplitudes and viscosity contrasts essentially depends on a single parameter rather than three parameters as commonly assumed (strain, initial amplitude and viscosity contrast). This single parameter is constructed by scaling the strain with the crossover strain, which is the specific value of strain at which the linear solutions fail. Scaling the strain with the crossover strain yields a collapse of all amplitude evolution paths for different initial amplitudes and viscosity contrasts onto a single amplification path. Analytical solutions for the evolution of the layer-parallel deviatoric stress within the layer during folding are presented showing a decrease of the layer-parallel deviatoric stress with increasing fold amplitude. All stress–amplitude evolution paths for different initial amplitudes and viscosity contrasts can be collapsed onto a single stress–amplitude evolution path, if the amplitude is scaled by the crossover amplitude. The decrease in stress is proportional to a decrease in effective viscosity of the layer during folding. This decrease in effective viscosity represents structural softening, because the true, Newtonian viscosity of the layer remains constant.  相似文献   

15.
To investigate the stability characteristic of hypersonic flow under the action of a freestream pulse wave, a high-order finite difference method was employed to do direction numerical simulation (DNS) of hypersonic unsteady flow over an 8° half-wedge-angle blunt wedge with freestream slow acoustic wave. The evolution of disturbance wave modes in the boundary layer under a pulse wave and a continuous wave are compared, and the wall temperature effect on the hypersonic boundary layer stability for a pulse wave disturbance is discussed. Results show that, both for a pulse wave and a continuous wave in freestream, the disturbance waves inside the nose boundary layer are mainly a fundamental mode; the Fourier amplitude of pressure disturbance mode in the boundary layer for a pulse wave is far less than that for a continuous wave, and the band frequency of the former is wider than that of the latter. All disturbance modes decay rapidly along the streamwise in the nose boundary layer. In the non-nose boundary layer, the dominant mode is transferred from fundamental mode into second harmonic. The transformation of dominant mode for a pulse wave appears much earlier than that for a continuous wave. Different frequency disturbance modes present different changes along streamline in the boundary layer, and the frequency band narrows around the second harmonic mode along the streamwise. Keen competition and the transformation of energy exist among different modes in the boundary layer. Wall temperature modifies the stability characteristic of the hypersonic boundary layer, which presents little effect on the development of fundamental modes and cooling wall could accelerates the growth of the high frequency mode as well as the dominant mode transformation.  相似文献   

16.
We discuss a new concept of the subcritical transition to turbulence in unbounded smooth (noninflectional) spectrally stable shear flows. This concept (the so-called bypass transition) follows from considering the nonnormality of the linear dynamics of vortex disturbances in shear flows and is most easily interpreted by tracing the evolution of spatial Fourier harmonics (SFHs) of the disturbances. The key features of the concept are as follows: the transition of the flow by only finite-amplitude vortex disturbances despite the fact that the phenomenon is energetically supported by a linear process (the transient growth of SFHs); the anisotropy of processes in the k space; the onset of chaos due to the dynamical (not stochastic) process—nonlinear processes that close the transition feedback loop by the angular redistribution of SFHs in the k space. The evolution of two-dimensional small-scale vortex disturbances in a parallel flow with a uniform shear is analyzed within the weak turbulence approach. This numerical test analysis is carried out to prove the most problematic statement of the concept, the existence of a positive feedback caused by the nonlinear process. Numerical calculations also show the existence of a threshold: if the amplitude of the initial disturbance exceeds the threshold value, the self-maintenance of disturbances becomes realistic. The latter is a characteristic feature of the flow transition to the turbulent state and its maintenance.  相似文献   

17.
Due to the complexity of compressible flows, nonlinear hydrodynamic stability theories in supersonic boundary layers are not sufficient. In order to reveal the nonlinear interaction mechanisms of the rapidly amplified 3-D disturbances in supersonic boundary layers at high Mach numbers, the nonlinear evolutions of different disturbances in flat-plate boundary layers at Mach number 4.5, 6 and 8 are analyzed by numerical simulations. It can be concluded that the 3-D disturbances are amplified rapidly when the amplitude of the 2-D disturbance reaches a certain level. The most rapidly amplified 3-D disturbances are Klebanoff type (K-type) disturbances which have the same frequency as the 2-D disturbance. Among these K-type 3-D disturbances, the disturbances located at the junction of upper branch and lower branch of the neutral curve are amplified higher. Through analyzing the relationship between the amplification rate and the spanwise wavenumber of the 3-D disturbances at different evolution stages, the mechanism of the spanwise wavenumber selectivity of K-type 3-D disturbances in the presence of a finite amplitude 2-D disturbance is explained.  相似文献   

18.
By idealizing combustion or heat addition processes to occur over a short distance in the flow direction it is possible to calculate the amplitude and phase of the disturbances corresponding to small amplitude fluctuations in the heat addition. The fluctuating heat input is assumed to vary sinusoidally with time and with distance along the direction normal to the flow. Pressure waves propagate away from the heat input region upstream and downstream, whilst on the downstream side waves of vorticity and entropy are convected away. Strong resonant peaks in the pressure and vorticity waves are present close to the cut-off condition of the pressure waves in two dimensions. Generally the wave amplitudes tend to be higher when the mean flow velocity into the region is close to sonic and to become smaller as the steady heat input is increased. For a simplified calculation in which the combustion chamber discharges directly into a multi-stage turbine the downstream noise was predominantly due to the interaction of the entropy with the turbine (i.e., “indirect” rather than “direct” combustion noise).  相似文献   

19.
Hypersonic boundary layer transition induced by an isolated cylindrical roughness element is investigated using direct numerical simulation method based on a finite volume formulation. To simulate the transition procedure by resolving the generation and evolvement of small-scale coherent structures, and capture the shock wave at the same time, high-order minimum dispersion and controllable dissipation scheme is validated and then applied. The results are compared with the available measurements in the quiet wind tunnel, such as the dominated frequency and root mean square of pressure. The computational dominated frequency of 19.23 kHz is very close to the experimental one, 21 kHz. Also, the disturbances of the roughness are mostly generated by the “jet” just before the roughness, and then they travel and develop downstream with the shear layer and vortex shedding. The transition is mainly dominated by the instabilities of both the horseshoe vortex and the shear layer.  相似文献   

20.
Breakdown of boundary layer streaks is studied experimentally and compared at zero and adverse (positive) streamwise pressure gradients on a wing under fully controlled experimental conditions. The varicose mode of streak breakdown is found to be a dominant mode in the case of the adverse pressure gradient. A strong influence of pressure gradient upon the development of the streak and the secondary instability is revealed. The unfavourable pressure gradient is shown to alter the critical streak amplitude, the dispersion properties of the streak and the secondary disturbance, as well as attained maximum amplitudes for both the streak and the secondary disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号