首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
研究了YCl3-LiClO4-DMSO(二甲基亚砜)体系电导率与温度的关系,及钇在Pt和Cu电极上的电化学行为。结果表明,Y^3+在Pt和Cu电极上可一步不可逆还原为Y,在铜电极上于-2.500V(vs SCE下恒电位电解,可获得粘附性好、Y含量达97.9%(质量分数)的均匀沉积膜。利用循环伏安法、计时电流法、计时电位法测定了Y^3+离子在298K下,YCl3-LiClO4-DMSO溶液中的扩散系  相似文献   

2.
二甲基亚砜中E-Ni-Co合金膜的电化学制备   总被引:3,自引:0,他引:3  
利用循环伏安法和恒电位电解法研究了室温条件下在LiClO4-二甲基亚砜(DMSO)体系中Er-Ni-Co功能合金膜的电化学制备.实验结果表明, 在0.1 mol•L-1 ErCl3-0.1 mol•L-1 NiCl2-0.1 mol•L-1 CoCl2-0.1 mol•L-1 LiClO4-DMSO体系中,控制电位在-2.20~-2.50 V范围内进行恒电位电解,得到表面均匀、附着力强、有金属光泽的黑色非晶态Er-Ni-Co合金膜, 其中Er的质量分数可达9.21%~18.90%.  相似文献   

3.
利用循环伏安法和恒电位电解法研究了室温下在二甲基亚砜中铈钴合金膜的电化学制备.结果表明,二甲基亚砜中Ce(Ⅲ)在Pt电极上的还原反应为一步完全不可逆反应.控制沉积电位在-2.10V~2.30V,利用恒电位电解得到表面平滑,附着力好,铈含量为37wt%~45wt%的铈钴合金膜.  相似文献   

4.
碳纳米管的功能化及其电化学性能   总被引:8,自引:0,他引:8  
超级电容器作为一种新型的储能元件,以其快速储存、释放能量等优点,近年来成为各国科研工作的研究重点和焦点[1 ̄3],并在数据记忆存储系统、便携式仪器设备、后备电源、通讯设备、计算机、燃料电池、电动车混合电源等许多领域都有广泛的应用前景[4]。目前,超级电容器用的电极材  相似文献   

5.
氨基酸离子液体(AAILs)由于其独特的化学和物理特性,特别是它突出的生物相容性和优异的绿色特性,已经引起了广泛的关注.本文设计了一种新型的基于氨基酸离子液体和碳纳米管(CNTs)复合物的电化学传感界面.其中,氨基酸离子液体被用作一种新型的葡萄糖氧化酶(GOD)溶剂.通过将碳纳米管修饰的玻碳(OC)电极浸泡在含有葡萄糖氧化酶的氨基酸离子液体溶液中,就可以方便的获得GOD—AAILs/CNTs/GC电极.我们研究了葡萄糖氧化酶在GOD.AAILs/CNTs/GC电极上的直接电化学,获得了一对可逆的氧化还原峰.同时固定在电极上的葡萄糖氧化酶仍然保持了它们的生物活性以及催化溶解氧还原的能力.在氨基酸离子液体和碳纳米管的协同作用下,该GOD.AAILs/cNTs/Gc电极展现了对葡萄糖良好的电催化活性,其检测线性范围为0.05~0.8mmol/L,检测限为5.5μmol/L(S/N=3).尤其该传感器显示了良好的稳定性以及排除常见共存物尿酸和抗坏血酸干扰的能力.因此,对于氧化还原酶的直接电化学以及第三代酶传感器的制作来说,AAILs/CNTs复合物将会成为一种很好的生物相容性材料.  相似文献   

6.
陆宝仪  赖艳艳  李红 《电化学》2009,15(1):67-73
采用修饰单壁碳纳米管(SWNT、SWNT-COOH或SWNT-OH)及多壁碳纳米管(MWNT、MWNT-COOH或MWNT-OH)的石墨电极研究配位阴离子[Fe(CN)6]3-和配位阳离子[Co(phen)3]3+的电化学行为与吸附性能,借助[Co(phen)3]3+在碳纳米管(CNT)的强吸附特性制备[Co(phen)3]3+/CNT/C修饰电极,以其应用于6-MP的分析检测.结果表明:1)在CNT修饰电极上[Fe(CN)6]3-/4-呈现很好的氧化还原可逆性,而[Co(phen)3]3+则显示明显的吸附控制特征.2)[Co(phen)3]3+在多壁碳纳米管修饰电极上的吸附量较单壁碳纳米管大,但经羧基化或羟基化后,吸附量减小,而且在羧基化表面的吸附量较羟基化的大.3)[Co(phen)3]3+与6-MP间存在明显的相互作用,其配位产物的还原峰电流与6-MP浓度呈线性关系.  相似文献   

7.
碳纳米管的电化学贮氢性能研究   总被引:13,自引:0,他引:13  
研究了碳纳米管电极的电化学性能 ,其电化学储氢量达到 2 0 0mAh·g 1且具有高的电化学活性和良好的循环寿命 .采用循环伏安法研究了氢在碳纳米管电极上吸附 /氧化机理 .  相似文献   

8.
碳纳米管的纯化——电化学氧化法   总被引:13,自引:0,他引:13  
用电化学氧化法对碳纳米管进行纯化,从稳态极化曲线出发,对反应的可行性进行了分析,考察了支持电解质、电流密度、时间等因素对反应的影响,确定了最佳实验条件,同时对纯化机理进行了解释.  相似文献   

9.
Pt/碳纳米管电极的电化学稳定性   总被引:1,自引:0,他引:1  
 研究了Pt/CNT(碳纳米管)电极在动电位和恒电位两种情况下的电化学稳定性. 在动电位条件(0.05~1.2 V vs RHE(可逆氢电极)循环伏安940次, 60 h)下, Pt/CNT电极的电化学表面积下降18.8%; 在恒电位条件(1.2 V vs RHE, 60 h)下, Pt/CNT电极的电化学表面积仅下降5.2%. 这表明Pt/CNT电极在动电位条件下性能衰减得更迅速. X射线光电子能谱分析表明,恒电位条件下载体碳纳米管被氧化的程度较大. X射线衍射分析计算表明,动电位和恒电位氧化后, Pt颗粒的平均粒径从3.8 nm分别增大到4.9和3.9 nm. Pt颗粒的长大可能是Pt/CNT电极性能衰减的主要原因之一,而载体的氧化不是Pt/CNT电极性能衰减的主要原因.  相似文献   

10.
电化学方法检测DNA碳纳米管修饰电极   总被引:3,自引:0,他引:3  
DNA;碳纳米管;修饰电极;硫堇;电化学指示剂  相似文献   

11.
定向多壁碳纳米管电化学储氢研究   总被引:6,自引:0,他引:6  
利用恒流充放电、循环伏安曲线(CV)和电化学阻抗技术(EIS)等方法对定向多壁碳纳米管(AMWCNTs)储氢的电化学行为及其储氢机制进行了探讨.研究表明,定向AMWCNTs-Cu电极有较高的电化学储氢性能,其储氢容量在1500mA/g的电流密度下可以达到1162mA·h/g.定向AMWCNTs的电化学储氢能力强与其空间结构有关,而铜粉的加入有利于提高碳纳米管的电催化反应表面积和电极电化学反应活性,有利于氢在碳纳米管中扩散,从而提高了碳纳米管电极材料的储氢量.  相似文献   

12.
不同直径碳纳米管的抗电化学氧化性   总被引:1,自引:0,他引:1  
本文比较了由化学气相沉积法制备的不同直径(在100 nm以内)的多壁碳纳米管(CNT)的抗电化学氧化性.将CNT电极于1.2 V(vs.RHE)下电氧化120 h,记录氧化电流~时间变化曲线;X射线光电子能谱(XPS)分析氧化前后CNT的表面化学组成.结果表明,随着CNT直径的减小,其氧化电流降低,但其中以为10~20 nm的CNT电极氧化电流最小,表面氧的增量也最小,即被氧化的程度最低,抗电化学氧化性最强.根据不同直径CNT的缺陷位、不定型碳的丰度和碳原子的应力能,分析了其抗电化学氧化性差异的原因.  相似文献   

13.
氮掺杂碳纳米管修饰电极的电化学行为   总被引:1,自引:0,他引:1  
董俊萍  曲晓敏  王利军  王田霖 《化学学报》2007,65(21):2405-2410
制备了氮掺杂改性的碳纳米管, 并用循环伏安法(CV)测定了多巴胺(DA)和抗坏血酸(AA)在不同氮含量的碳纳米管修饰电极上的电化学行为. 结果表明, 氮掺杂碳纳米管修饰电极对AA和DA有不同的电催化行为, 其中高氮含量修饰电极对AA的催化作用强, 而低氮含量修饰电极对DA的催化作用强. 微分脉冲伏安法(DPV)的结果显示, DA的氧化峰电流与其浓度在5.0×10-6~2.0×10-4 mol/L范围内呈良好的线性关系, 检出限达1.64×10-6 mol/L (S/N=3); AA氧化峰电流与其浓度在3.0×10-5~1.0×10-2 mol/L范围内呈良好的线性关系, 检出限达3.26×10-6 mol/L (S/N=3). 该修饰电极在AA大量存在(AA浓度为DA浓度两万倍)时可选择性地实现多巴胺的测定而不造成干扰.  相似文献   

14.
高泉涌  张静  杨勇 《电化学》2005,11(1):87-91
本文提出一种改进的氧化铝模板法制备碳纳米管阵列电极:首先结合气相化学沉积和磁控溅射在氧化铝模板中制得碳纳米管阵列电极,然后用HF溶液将沉积了碳纳米管的氧化铝模板阻挡层除去,控制溶出时间即可得到不同溶出长度的碳纳米管阵列电极.循环伏安测试表明,锂离子在该阵列电极中的嵌入脱出反应主要发生在碳纳米管的端口处.此外,还应用固定频率交流阻抗法,研究了不同溶出时间的碳纳米管阵列电极的电容性质.  相似文献   

15.
氮掺杂碳纳米管的制备及其电化学性能   总被引:2,自引:0,他引:2  
采用弱反应性含氮有机物水合肼、二乙烯三胺对碳纳米管进行氮掺杂处理. 结合X射线光电子谱(XPS)分析和扫描电镜(SEM)观察, 发现两种含氮有机物处理均可使碳纳米管表面成功连接上含氮基团, 并保持了碳纳米管的本征形貌和结构. 水合肼处理的碳纳米管的氮含量(碳/氮原子比为95/2)明显高于二乙烯三胺处理的碳纳米管(碳/氮原子比为96/0.5). 氮掺杂后碳纳米管在水溶液中分散性明显改善, 且分散性随着氮含量增加进一步增强, 因此水合肼处理的碳纳米管分散性明显优于二乙烯三胺处理的碳纳米管. 作为电化学电容器电极材料, 碳纳米管含氮官能团贡献了赝电容, 但其循环性仍需进一步改进. 氮掺杂碳纳米管较好的亲水性, 改善了电解液的浸润, 循环后氮掺杂碳纳米管电极的比容量仍略高于纯碳纳米管电极的比容量.  相似文献   

16.
香豆素及其衍生物在二甲基亚砜中的电还原性质   总被引:1,自引:1,他引:0  
采用循环伏安法对香豆素及其衍生物的电还原进行研究;香豆素的电还原发生在羰基上;如果香豆素衍生物分子上含有吸电子基团,则还原电位正移;如果含有给电子基因,则还原电位负移;如果同时含有吸电子和给电子基因,则表现综合结果。  相似文献   

17.
研究了羟胺在碳纳米管修饰玻碳电极(CNT/GC)上的电化学行为。研究结果表明,碳纳米管对羟胺的电化学行为有良好的电催化作用,在-0.62 V有一还原峰,是羟胺获得2个电子还原为铵所形成,同时测定了该电化学过程的动力学参数:电子转移数n为2,电子转移系数α为0.287,电极反应速率常数k为1.35×10-3cm/s。  相似文献   

18.
选择含N配体(L=1,3-双(1-咪唑)丙烷)与磷钼酸(H3PMo12O40)水热合成了一个新的无机-有机杂化化合物(H2L)2(HL)2L (PMo12O402·2H2O (PMo12)。通过红外、热重、X射线光电子能谱、X射线粉末衍射和单晶衍射等对该化合物进行了表征。X射线单晶衍射表明该化合物为3D结构。将该化合物和多壁碳纳米管修饰在玻碳电极上构造了一种双酚A电化学传感器并对其传感性能进行研究。研究表明,在1~20 μmol·L-1范围内,检出限为0.5 μmol·L-1S/N=3),并且该传感器具有良好的抗干扰和稳定性。  相似文献   

19.
应用参考作用格位模型理论计算了二甲基亚砜(DMSO)摩尔分数为0.002时不同温度下溶液的微观结构和热力学性质. 计算结果表明, DMSO加入到水中能够增强溶液的分子网络结构. 温度升高, 配位数减小, 溶液中分子排布趋向无序. 平均力势的波动增大表明分子间的诱导力表现为斥力. 计算得到的各种热力学性质显示: 温度升高, 溶液的熵和溶剂化自由能增加, 相互作用能和过剩化学位也增加, 即高温下溶液越来越偏离理想溶液; 空位形成能降低表明溶液分子结构在高温下更容易重组.  相似文献   

20.
功能化多壁碳纳米管的光电性质   总被引:2,自引:0,他引:2  
表面光电压谱;循环伏安;金刚石薄膜电极;功能化多壁碳纳米管的光电性质  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号