首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work three different supports (γ-Al2O3, ZSM-5, and SAPO-34) of varying degree of acid sites and textural properties were used to evaluate the influence of support specifics in the Cu/supported nanocatalysts on NO conversion. The nanocatalysts were prepared by homogeneous deposition precipitation (HDP) method and characterized by N2 pore size distribution, TEM, H2-TPR for investigation the reducibility of the copper species and acidity measurement by NH3 adsorption. The Cu/ZSM-5 and Cu/SAPO-34 catalysts were more active for NO conversion than Cu/γ-Al2O3 catalyst. The characterization and conversion differences in the copper supported on different types of support indicated that these differences arise from the differences in surface area, pore size distribution, and acidity of the supports. The higher SCR-DeNO activity of Cu/ZSM-5 and Cu/SAPO-34 nano-catalysts can be explained by higher surface area and acidity of ZSM-5 and SAPO-34 supports. These catalysts also have larger amount of reducible Cu species compared to Cu/γ-Al2O3 which correlates with the structure of the support used. Considering these findings, the NO conversion ability of Cu/supported catalysts has been correlated with support structure and acidity.  相似文献   

2.
The Cu/ZSM-5 catalysts prepared by different copper precursors were used for the selective catalytic reduction (SCR) of NO x with NH3. The Cu/ZSM-5 catalyst prepared by the copper nitrate (Cu/ZSM-5-N) presented the best performance among the Cu/ZSM-5 catalysts and showed above 90 % NO x conversion at 225–405 °C. The average particle size of CuO was 5.82, 9.20, and 11.01 nm over Cu/ZSM-5-N, Cu/ZSM-5-S (prepared by copper sulfate), and Cu/ZSM-5-C (prepared by copper chloride), respectively. The Cu/ZSM-5-N catalyst showed the highly dispersed copper species, the strong surface acidity, and the excellent redox ability compared with the Cu/ZSM-5-C and Cu/ZSM-5-S catalysts. The Cu+ and Cu2+ existed in the Cu/ZSM-5 catalysts and the abundant Cu+ over Cu/ZSM-5-N might be responsible for the superior SCR activity.  相似文献   

3.
In order to obtain highly active catalytic materials for oxidation of carbon monoxide and volatile organic compounds (VOCs), monometallic platinum, copper, and palladium catalysts were prepared by using of two types of ZSM-5 zeolite as supports—parent ZSM-5 and the same one treated by HF and NH4F buffer solution. The catalyst samples, obtained by loading of platinum, palladium, and copper on ZSM-5 zeolite treated using HF and NH4F buffer solution, were more active in the reaction of CO and benzene oxidation compared with catalyst samples containing untreated zeolite. The presence of secondary mesoporosity played a positive role in increasing the catalytic activity due to improved reactant diffusion. The only exception was the copper catalysts in the reaction of CO oxidation, in which case the catalyst, based on untreated ZSM-5 zeolite, was more active. In this specific case, the key role is played by the oxidative state of copper species loaded on the ZSM-5 zeolites.  相似文献   

4.
Two series of Cu/ZSM-5 catalysts,loading from 5 to 20 wt% CuO,were prepared by the deposition-precipitation and impregnation methods,respectively.The catalysts prepared by the impreg- nation method showed better catalytic performances than those prepared by the deposition-precipitation method and the increase of copper loading favored methane conversion.20Cu(I)/ZSM-5 had the highest activity with T_(90%)of 746 K,and for 20Cu(D)/ZSM-5,T_(90%)was as high as 804 K.The characteriza- tion of X-ray diffraction(XRD),temperature-programmed reduction(TPR),temperature-programmed desorption(TPD),and X-ray photoelectron spectroscopy(XPS)revealed that the dispersion of cop- per species could be improved by using the deposition-precipitation method instead of the impregnation method,but the fraction of surface CuO,corresponding to active sites for methane oxidation,was larger on 20Cu(I)/ZSM-5 than 20Cu(D)/ZSM-5.The results of Pyridine-Fourier transform infrared spectrum (Py-FT-IR)showed that a majority of Lewis acidity and a minority of Brφnsted acidity were present on Cu/ZSM-5 catalysts.20Cu(I)/ZSM-5 presented more Lewis acid sites.The number of Lewis acid sites changed significantly with preadsorption of oxygen.Adsorption of methane and oxygen on acid sites was observed.The properties of Cu/ZSM-5 catalysts were correlated with the activity for methane oxidation.  相似文献   

5.
Supported Cu/ZSM-5 catalysts have been synthesized by ion exchange and impregnation using aqueous ammonia solutions of copper nitrate containing orbital-ordered copper ions. The state of the copper-containing component in the pore space of the catalysts and copper sorption in the catalysts have been investigated by a complex of physicochemical methods. The catalytic properties of Cu/ZSM-5 in the selective catalytic reduction of NO with propane are reported. The catalytic properties depend on the copper precursor structure and deposition method, which determine the size of the copper oxide clusters on the outer surface of zeolite crystals.  相似文献   

6.
Removal of nitrates from drinking water by catalytic hydrogenation over ZSM-5 supported Pt-Cu catalysts was studied. Bimetallics Pt-Cu were prepared by ion exchange of copper on a parent monometallic platinum catalyst. Monometallic platinum catalysts are inactive for nitrate reduction, while Pt-Cu bimetallic catalysts are active for nitrate removal. In the bimetallic catalyst, the role of copper is probably to reduce nitrate according to a redox reaction. The addition of copper to Pt catalysts decreases the production of ammonium ions  相似文献   

7.
通过水热法合成SAPO-34分子筛,将其制成催化剂用于催化丁烯转化制取丙烯,考察了反应温度、空速和铝磷比等对催化性能的影响;还比较了SAPO-34分子筛与ZSM-5分子筛催化该反应的差异.结果表明,在实验范围内,反应温度升高会使得丁烯的转化率明显增高,且丙烯选择性提高;而空速增加,则丁烯的转化率和丙烯选择性降低;铝磷比越大,对丙烯的选择性越差.在有效的反应时间内,SAPO-34分子筛催化效果好于ZSM-5分子筛,但单程寿命较ZSM-5分子筛短.  相似文献   

8.
采用固态离子交换法制备了系列一价铜改性的ZSM-5催化剂,结合多种表征手段,研究了一价铜改性对碳烟氧化反应催化活性的影响。结果表明,采用固态离子交换法可以制备出高负载量的一价铜改性Cu/ZSM-5分子筛催化剂,而不会破坏ZSM-5分子筛原有微孔结构;随催化剂中一价铜比例的增加,低温还原峰和高温还原峰均向低温段移动,且低温还原峰面积增加。改性催化剂对碳烟氧化反应的催化活性随改性元素比例变化先增加后降低;当铜改性比例超过11%后,铜物种的分散性及催化剂对碳烟氧化反应的催化活性均恶化。同时研究还发现,反应气氛中通入NO可以改善催化剂对碳烟氧化反应的催化效果。  相似文献   

9.
The catalytic properties of Cu/ZSM-5 and Cu/erionite in the oxidation of carbon monoxide were studied. After treatment in a hydrogen stream, these copper zeolite catalysts displayed higher catalytic activity than prior to treatment. Variation of the catalytic properties of the systems obtained was attributed to differences in the state of the copper ions.  相似文献   

10.
The activities of the copper-based catalysts, Cu2+ /SiO2,Cu2+ /Vycor and Cu2+/ZSM-5, and V2O5/TiO2 for NO conversion to N2 in the presence or absence of NH3 and/or O2 have been investigated. The Cu2+ /ZSM-5 catalyst exhibited the highest activity, even higher than that of V2O5/TiO2. Photoluminescence studies of the dehydrated copper-based catalysts have suggested that the copper ions anchored onto ZSM-5 locate as isolated copper species near Brönsted sites in the zeolite channels while the copper ions anchored onto Vycor and SiO2 locate mainly as copper dimer forms. These results suggest the role of copper ions which are stabilized with near-lying oxygen vacancies created by dehydroxylation of the zeolite, in NO conversion. As a result, it may be concluded that the isolated copper ions near Brönsted sites play a significant role in NO conversion but dimeric or polynuclear copper species are less effective for the reaction.  相似文献   

11.
选用四种不同的分子筛(SAPO-34, ZSM-5, Y, MCM-41)与CuCoMn(高醇合成组元)构成双功能催化剂,利用N2吸脱附、H2-TPR、XRD、NH3-TPD等表征了催化剂的结构性质. 研究了催化剂在生物质基合成气一段法制取液态烃燃料的应用. 相比于CuCoMn催化剂,加入分子筛的双功能催化剂均不同程度地提高了液体烃燃料的选择性及收率,且收率按顺序递减呈CCM-ZSM-5〉CCM-SAPO-34〉CCM-Y〉CCM-MCM-41. 同时,共沉淀法制备的CuCoMn-ZSM-5 (20wt%, Si/Al=100) 具有最佳的CO转化率(76%)及液体产物收率(30%). 相比于CuCoMn氧化物,双功能催化剂的比表面及孔容均得到提高. CCM-ZSM-5具有适中的微孔尺寸和中等强度的酸性,增加CCM-ZSM-5中ZSM-5含量或降低ZSM-5中的Si/Al比,均有利于提高酸性位的数量,主要是较弱的酸性位. 而共沉淀法制备的CCM-ZSM-5具有更好的金属分散性及还原性能.  相似文献   

12.
Thermal stability and its influence on the catalytic activity in CO oxidation of Cu, Pd and Pd-Cu zeolite systems were investigated. The increasing of catalytic activity in the first cycle of reaction is connected with the thermal decomposition of complexions and consequently with the changing of metal state in catalyst in the case of Cu/ZSM-5catalyst. This activity does not relate to initial zeolite with complex ions, but to the metal ions with the decreasing ligands number in the coordination sphere of metal ion. According to the EPR spectrum the copper ions form clusters in zeolite channels due to the spin changed interaction. It was established ESR method that 1.8% Cu/ZSM-5 catalyst in a reduced form has copper (I and II) ions by. The Pd/ZSM-5 catalysts with different metal content have high catalytic activity below the temperature decomposition in contrary to Cu-containing zeolites. On the one hand, it may be connected with the partial reduction of Pd ions during CO oxidation and, on the other hand, with the ability of Pd ions to form the respective label complexes with reagents as additional ligands. The same character of relation between thermal stability and catalytic activity for Pd-Cu/ZSM-5 catalyst was observed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
沸石载体结构对甲烷无氧芳构化性能的影响   总被引:7,自引:1,他引:6  
考察了担载MoO3的沸石催化剂上甲烷的无氧芳构化性能,并与沸石结构相关联.结果表明,孔径与苯分子动态直径相当的ZSM-5、ZSM-8、ZSM-11和β沸石等是甲烷无氧芳构化催化剂的良好载体,其中3%MoO3/HZSM-11具有最高的甲烷芳构化活性和稳定性,973K下的转化率和苯选择性分别为8.0%和90.9%;6%MoO3/HZSM-8与7%MoO3/H-β芳构化性能相当.以HMCM-41和HSAPO-34为载体时芳构化活性很低,以HMOR、HX和HY为载体时仅有少量乙烯生成,而以HSAPO-5和HSAPO-11为载体时未检测到烃类生成.  相似文献   

14.
Cu–Mn bimetal catalysts were prepared to remove nitrogen oxides (NOx) from diesel engine exhaust at low temperatures. At a Cu/Mn ratio of 3:2, the NOx conversions at 200 °C reached 65% and 90% on Cu–Mn/ZSM-5 and Cu–Mn/SAPO-34, respectively. After a hydrothermal treatment and reaction in the presence of C3H6, the activity of Cu–Mn/SAPO-34 was more stable than that of Cu–Mn/ZSM-5. No obvious variations in the crystal structure or dealumination were observed, whereas the physical structure was best maintained in Cu–Mn/SAPO-34. The atomic concentration of Cu on the surface of Cu–Mn/SAPO-34 was quite stable, and the consumption of octahedrally coordinated Cu2+ could be recovered. Conversely, the proportion of octahedrally coordinated Cu2+ on the surface of Cu–Mn/ZSM-5 significantly decreased. Therefore, besides the structure, the redox cycle between Cu+ and octahedrally coordinated Cu2+ played an important role in the stability of the catalysts.  相似文献   

15.
The distribution of copper- and nickel-containing components in the pore space of HZSM-5 zeolite was quantitatively studied. It was found that the detailed distribution of a modifier in the micropore and mesopore volumes of the zeolite depends on both the chemical nature of the modifier and the conditions of supporting and the regime of M2+ polycondensation in the pore space of the zeolite. The experimental data on the low-temperature adsorption of nitrogen on Cu(n)ZSM-5 catalysts can be interpreted as the result of the partial filling of the zeolite micropore space (10 vol %) and the finest mesopores with D < 3 nm with the modifier. In the case of Ni(n)ZSM-5 catalysts, the penetration of the modifier into zeolite channels (micropores) in detectable amounts was not found, and it was arranged in mesopores on the surface of zeolite crystallites. The reason for differences between modifier distributions in the pore structure of the zeolite was explained from the standpoint of different structures of copper and nickel polyhydroxo complexes in impregnating solutions after polycondensation. It was found that, in the Cu(n)ZSM-5 and Ni(n)ZSM-5 catalysts, the modifier component contained copper and nickel only in a doubly charged state and mainly octahedral oxygen environments. In this case, three-dimensional nanoparticles or coarsely dispersed particles of CuO were not detected in the pore space of the support, whereas the presence of a small amount of sufficiently large NiO crystals with a coherent-scattering region of 80–100 nm was detected in Ni(n)ZSM-5, and these crystals occurred on the surface of zeolite crystals. It was found that the apparent density of a copper-or nickel-containing component arranged in the pore space of the zeolite was lower than the density of the bulk CuO and NiO phases by a factor of ~3 and 4, respectively, because of the size effect.  相似文献   

16.
为考察成型时,黏合剂性能对ZSM-5分子筛的影响,对同一分子筛用六种不同黏合剂捏合,挤条成型,进行SEM、NH3-TPD和N2物理吸附表征。结果表明,六个成型物在形貌和BET比表面积均无明显差异,二次孔数量明显比分子筛原粉增加。所用纯硅溶胶黏合剂的成型物,其NH3-TPD酸量、微孔体积和微孔比表面积低于其分子筛原粉。所用含铝黏合剂的成型物,其NH3-TPD酸量、微孔体积和微孔比表面积变化不明显,BJH累积孔体积明显增加。在固定床反应器中于600 ℃裂解石脑油。发现,纯硅溶胶黏合剂成型物的乙烯+丙烯收率明显低于含铝黏合剂。  相似文献   

17.
We describe the use of vitreous carbon as an improved reactor material for an operando X-ray absorption spectroscopy (XAS) plug-flow reactor. These tubes significantly broaden the operating range for operando experiments. Using selective catalytic reduction (SCR) of NO(x) by NH(3) on Cu/Zeolites (SSZ-13, SAPO-34 and ZSM-5) as an example reaction, we illustrate the high-quality XAS data achievable with these reactors. The operando experiments showed that in Standard SCR conditions of 300 ppm NO, 300 ppm NH(3), 5% O(2), 5% H(2)O, 5% CO(2) and balance He at 200 °C, the Cu was a mixture of Cu(I) and Cu(II) oxidation states. XANES and EXAFS fitting found the percent of Cu(I) to be 15%, 45% and 65% for SSZ-13, SAPO-34 and ZSM-5, respectively. For Standard SCR, the catalytic rates per mole of Cu for Cu/SSZ-13 and Cu/SAPO-34 were about one third of the rate per mole of Cu on Cu/ZSM-5. Based on the apparent lack of correlation of rate with the presence of Cu(I), we propose that the reaction occurs via a redox cycle of Cu(I) and Cu(II). Cu(I) was not found in in situ SCR experiments on Cu/Zeolites under the same conditions, demonstrating a possible pitfall of in situ measurements. A Cu/SiO(2) catalyst, reduced in H(2) at 300 °C, was also used to demonstrate the reactor's operando capabilities using a bending magnet beamline. Analysis of the EXAFS data showed the Cu/SiO(2) catalyst to be in a partially reduced Cu metal-Cu(I) state. In addition to improvements in data quality, the reactors are superior in temperature, stability, strength and ease of use compared to previously proposed borosilicate glass, polyimide tubing, beryllium and capillary reactors. The solid carbon tubes are non-porous, machinable, can be operated at high pressure (tested at 25 bar), are inert, have high material purity and high X-ray transmittance.  相似文献   

18.
Aluminum coordination in the framework of USY and ZSM-5 zeolites containing charge-compensating cations (NH4+, H+, or Cu+) was investigated by Al K-edge EXAFS and XANES. This work was performed using a newly developed in-situ cell designed especially for acquiring soft X-ray absorption data. Both tetrahedrally and octahedrally coordinated Al were observed for hydrated H-USY and H-ZSM-5, in good agreement with 27Al NMR analyses. Upon dehydration, water desorbed from the zeolite, and octahedrally coordinated Al was converted progressively to tetrahedrally coordinated Al. These observations confirmed the hypothesis that the interaction of water with Br?nsted acid protons can lead to octahedral coordination of Al without loss of Al from the zeolite lattice. When H+ is replaced with NH4+ or Cu+, charge compensating species that absorb less water, less octahedrally coordinated Al was observed. Analysis of Al K-edge EXAFS data indicates that the Al-O bond distance for tetrahedrally coordinated Al in dehydrated USY and ZSM-5 is 1.67 angstroms. Simulation of k3chi(k) for Cu+ exchanged ZSM-5 leads to an estimated distance between Cu+ and framework Al atoms of 2.79 angstroms.  相似文献   

19.
《Chemical physics letters》1985,122(6):538-540
Structures of two copper catalysts, one with high catalytic activity, prepared from copper(II) acetate monohydrate and the reference prepared from tetraamminecopper(II), were determined by EXAFS and XANES. In the former catalyst, about 65% of the copper takes a binuclear structure highly dispersed on silica, whereas highly dispersed mononuclear species are dominant in the latter.  相似文献   

20.
A series of ZSM-5 catalysts (ZSM-5 (X)) treated with different NaOH concentration (X = 0, 0.05, 0.1, and 0.2 M) were prepared for use in the production of light olefins (ethylene and propylene) through catalytic cracking of C5 raffinate. The effect of NaOH concentration on their physicochemical properties and catalytic activity was investigated. It was found that textural and physicochemical properties of ZSM-5 (X) catalysts were strongly influenced by the NaOH concentration. Mesopore volume of ZSM-5 (X) catalysts increased with increasing NaOH concentration, while acidity of the catalysts decreased with increasing NaOH concentration. Conversion of C5 raffinate and yield for light olefins (ethylene and propylene) showed the volcano-shaped curves with respect to NaOH concentration (X). This implies that NaOH treatment of ZSM-5 was an efficient method to produce light olefins through catalytic cracking C5 raffinate, and that optimal NaOH concentration was required for maximum production of light olefins. Among the catalysts tested, ZSM-5 (0.05) catalyst showed the best catalytic performance due to its favorable porosity and acidity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号