首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper presents a thermodynamically consistent formulation for nonlocal damage models. Nonlocal models have been recognized as a theoretically clean and computationally efficient approach to overcome the shortcomings arising in continuum media with softening. The main features of the presented formulation are: (i) relations derived by the free energy potential fully complying with nonlocal thermodynamic principles; (ii) nonlocal integral operator which is self-adjoint at every point of the solid, including zones near to the solid’s boundary; (iii) capacity of regularizing the softening ill-posed continuum problem, restoring a meaningful nonlocal boundary value problem. In the present approach the nonlocal integral operator is applied consistently to the damage variable and to its thermodynamic conjugate force, i.e. nonlocality is restricted to internal variables only. The present model, when associative nonlocal damage flow rules are assumed, allows the derivation of the continuum tangent moduli tensor and the consistent tangent stiffness matrix which are symmetric. The formulation has been compared with other available nonlocal damage theories.Finally, the theory has been implemented in a finite element program and the numerical results obtained for 1-D and 2-D problems show its capability to reproduce in every circumstance a physical meaningful solution and fully mesh independent results.  相似文献   

2.
A simple mechanical one-dimensional problem in the context of nonlocal (integral) elasticity is solved analytically. The nonlocal elastic material behaviour is described by the “Eringen model” whose nonlocality features all reside in the constitutive relation. This relation, of integral type, contains an attenuation function (usually assumed symmetric) aimed to capture the diffusion process of the nonlocality effects; it also exhibits a convolution format. The governing equation is a Fredholm integral equation of second kind whose analytical treatment, even for the usual choice of a symmetric kernel, is not easy to develop. In the present paper, assuming a specific shape for the attenuation function, a closed form solution in terms of strains is alternatively obtained by solving a Volterra integral equation of second kind. The latter can be easily solved with standard techniques, at least for the adopted kernel, taking also advantage from the symmetry of the solution. Such a closed form solution is an essential result to validate the effectiveness of numerical procedures aimed to solve more complex mechanical problems in the context of nonlocal elasticity.  相似文献   

3.
A finite element procedure for analysing nonhomogeneous nonlocal elastic 2D problems is presented and discussed. The procedure grounds on a variationally consistent approach known, in the relevant literature, as Nonlocal Finite Element Method. The latter is recast making use of a recently theorized phenomenological strain-difference-based nonhomogeneous nonlocal elastic model. The peculiarities of the numerical procedure together with the pertinent nonlocal operators are expounded and discussed. Two simple numerical 2D examples close the paper.  相似文献   

4.
This paper studies the effects of structural and material length scales on the equilibrium domain patterns in thin-walled long tube configurations during stress-induced elastic phase transition under displacement-controlled quasi-static isothermal stretching. A nonconvex and nonlocal continuum model is developed and implemented into a finite element code to simulate the domain formation and evolution during the phase transition. The morphology and evolution of the macro-domains in different tube geometries are investigated by both analytical (energy analysis) and numerical (nonlocal finite element) methods. Energy minimization is used as the principle to explain the experimentally observed macroscopic domain patterns in a NiTi polycrystal tube. It is found that the domain pattern, as the minimizer of the system energy, is governed by the relative values of the material length scale g, tube-wall thickness h and tube radius R through two nondimensional factors: h/R and g/R. Physically, h/R and g/R serve as the weighting factors of bending energy and domain-wall energy over the membrane energy in the minimization of the total energy of the tube system. Theoretical predictions of the effects of these length scales on the domain pattern are quantified and confirmed by the computational parametric study. They all agree qualitatively well with the available experimental observations.  相似文献   

5.
The paper deals with the determination of the symmetric model and proper boundary conditions for solving nonlocal elastic symmetric structures. The above concepts, in the context of nonlocal integral elasticity, turn out to be different with respect to the standard ones, classically applied when dealing with local elastic symmetric structures. Indeed, when only a symmetric portion of the structure is analyzed, the nonlocal effects induced by the remaining (cut) portions are lost, this necessitates the consideration of an enlarged symmetric model on which appropriate nonlocal boundary conditions have to be imposed. It has to be pointed out how the width of such an enlarged model depends on the nonlocal material parameters, while the correct unknown nonlocal boundary conditions are here obtained and enforced by an iterative procedure. The accuracy of the proposed approach in solving nonlocal structural symmetric problems is tested with the aid of two numerical examples.  相似文献   

6.
Force multipoles are employed to represent various types of defects and physical phenomena in solids: point defects (interstitials, vacancies), surface steps and islands, proteins on biological membranes, inclusions, extended defects, and biological cell interactions among others. In the present work, we (i) as a prototype simple test case, conduct quantum mechanical calculations for mechanics of defects in graphene sheet and in parallel, (ii) formulate an enriched continuum elasticity theory of force dipoles of various anisotropies incorporating up to second gradients of strain fields (thus accounting for nonlocal dispersive effects) instead of the usual dispersion-less classical elasticity formulation that depends on just the strain (c.f. Peyla, P., Misbah, C., 2003. Elastic interaction between defects in thin and 2-D films. Eur. Phys. J. B. 33, 233-247). The fundamental Green's function is derived for the governing equations of second gradient elasticity and the elastic self and interaction energies between force dipoles are formulated for both the two-dimensional thin film and the three-dimensional case. While our continuum results asymptotically yield the same interaction energy law as Peyla and Misbah for large defect separations (∼1/rn for defects with n-fold symmetry), the near-field interactions are qualitatively far more complex and free of singularities. Certain qualitative behavior of defect mechanics predicted by atomistic calculations are well captured by our enriched continuum models in contrast to classical elasticity calculations. For example, consistent with our atomistic calculations of defects in isotropic graphene, even two dilation centers show a finite interaction (as opposed to classical elasticity that predicts zero interaction). We explicitly find the physically consistent result that the self-energy of a defect is equivalent to half the interaction energy between two identical defects when they “merge” into each other. The atomistic, classical elastic and the enriched continuum predictions are thoroughly compared for two types of defects in graphene: Stone-Wales and divacancy.  相似文献   

7.
8.
This paper is concerned with the bending problem of nanobeams starting from a nonlocal thermodynamic approach. A new coupled nonlocal model, depending on two nonlocal parameters, is obtained by using a suitable definition of the free energy. Unlike previous approaches which directly substitute the expression of the nonlocal stress into the classical equilibrium equations, the proposed approach provides a methodology to recover nonlocal models starting from the free energy function. The coupled model can then be specialized to obtain a nanobeam formulation based on the Eringen nonlocal elasticity theory and on the gradient elastic model. The variational formulations are consistently provided and the differential equations with the related boundary conditions are thus derived. Nanocantilevers are solved in a closed-form and numerical results are presented to investigate the influence of the nonlocal parameters.  相似文献   

9.
The axial vibration of single walled carbon nanotube embedded in an elastic medium is studied using nonlocal elasticity theory. The nonlocal constitutive equations of Eringen are used in the formulations. The effect of various parameters like stiffness of elastic medium, boundary conditions and nonlocal parameters on the axial vibration of nanorods is discussed. It is obtained that, the axial vibration frequencies of the embedded nanorods are highly over estimated by the classical continuum rod model which ignores the effect of small length scale.  相似文献   

10.
The problem of fracture initiating from an edge crack in a nonhomogeneous beam made of two dissimilar linear elastic materials that are partially bonded along a common interface is studied by the strain energy density theory. The beam is subjected to three-point bending and the unbonded part of the interface is symmetrically located with regard to the applied loading. The applied load acts on the stiffer material, while the edge crack lies in the softer material. Fracture initiation from the tip of the edge crack and global instability of the composite beam are studied by considering both the local and global stationary values of the strain energy density function, dW/dV. A length parameter l defined by the relative distance between the maximum of the local and global minima of dW/dV is determined for evaluating the stability of failure initiation by fracture. Predictions on critical loads for fracture initiation from the tip of the edge crack, crack trajectories and fracture instability are made. In the analysis the load, the length of the edge crack and the length and position of the interfacial crack remained unchanged. The influence of the ratio of the moduli of elasticity of the two materials, the position of the edge crack and the width of the stiffer material on the local and global instability of the beam was examined. A general trend is that the critical load for crack initiation and fracture instability is enhanced as the width and the modulus of elasticity of the stiffer material increase. Thus, the stiffer material acts as a barrier in load transfer.  相似文献   

11.
This study shows that it is possible to develop a well-posed size-dependent model by considering the effect of both nonlocality and surface energy, and the model can provide another effective way of nanomechanics for nanostructures. For a practical but simple problem(an Euler-Bernoulli beam model under bending), the ill-posed issue of the pure nonlocal integral elasticity can be overcome. Therefore, a well-posed governing equation can be developed for the Euler-Bernoulli beams when considering both the pure nonlocal integral elasticity and surface elasticity. Moreover, closed-form solutions are found for the deflections of clamped-clamped(C-C), simply-supported(S-S) and cantilever(C-F) nano-/micro-beams. The effective elastic moduli are obtained in terms of the closed-form solutions since the transfer of physical quantities in the transition region is an important problem for span-scale modeling methods. The nonlocal integral and surface elasticities are adopted to examine the size-dependence of the effective moduli and deflection of Ag beams.  相似文献   

12.
Convergence of Peridynamics to Classical Elasticity Theory   总被引:1,自引:0,他引:1  
The peridynamic model of solid mechanics is a nonlocal theory containing a length scale. It is based on direct interactions between points in a continuum separated from each other by a finite distance. The maximum interaction distance provides a length scale for the material model. This paper addresses the question of whether the peridynamic model for an elastic material reproduces the classical local model as this length scale goes to zero. We show that if the motion, constitutive model, and any nonhomogeneities are sufficiently smooth, then the peridynamic stress tensor converges in this limit to a Piola-Kirchhoff stress tensor that is a function only of the local deformation gradient tensor, as in the classical theory. This limiting Piola-Kirchhoff stress tensor field is differentiable, and its divergence represents the force density due to internal forces. The limiting, or collapsed, stress-strain model satisfies the conditions in the classical theory for angular momentum balance, isotropy, objectivity, and hyperelasticity, provided the original peridynamic constitutive model satisfies the appropriate conditions.   相似文献   

13.
In the conventional theory of finite deformations of fibre-reinforced elastic solids it is assumed that the strain-energy is an isotropic invariant function of the deformation and a unit vector A that defines the fibre direction and is convected with the material. This leads to a constitutive equation that involves no natural length. To incorporate fibre bending stiffness into a continuum theory, we make the more general assumption that the strain-energy depends on deformation, fibre direction, and the gradients of the fibre direction in the deformed configuration. The resulting extended theory requires, in general, a non-symmetric stress and the couple-stress. The constitutive equations for stress and couple-stress are formulated in a general way, and specialized to the case in which dependence on the fibre direction gradients is restricted to dependence on their directional derivatives in the fibre direction. This is further specialized to the case of plane strain, and finite pure bending of a thick plate is solved as an example. We also formulate and develop the linearized theory in which the stress and couple-stress are linear functions of the first and second spacial derivatives of the displacement. In this case for the symmetric part of the stress we recover the standard equations of transversely isotropic linear elasticity, with five elastic moduli, and find that, in the most general case, a further seven moduli are required to characterize the couple-stress.  相似文献   

14.
A theory of nonlocal elasticity of bi-Helmholtz type is studied. We employ Eringen’s model of nonlocal elasticity, with bi-Helmholtz type kernels, to study dispersion relations, screw and edge dislocations. The nonlocal kernels are derived analytically as Green functions of partial differential equations of fourth order. This continuum model of nonlocal elasticity involves two material length scales which may be derived from atomistics. The new nonlocal kernels are nonsingular in one-, two- and three-dimensions. Furthermore, the nonlocal elasticity of bi-Helmholtz type improves the one of Helmholtz type by predicting a dispersion relationship with zero group velocity at the end of the first Brillouin zone. New solutions for the stresses and strain energy of screw and edge dislocations are found.  相似文献   

15.
In this paper, a nonlinear theory of nonlocal asymmetric, elastic solids is developed on the basis of basic theories of nonlocal continuum fieM theory and nonlinear continuum mechanics. It perfects and expands the nonlocal elastic fiteld theory developed by Eringen and others. The linear theory of nonlocal asymmetric elasticity developed in [1] expands to the finite deformation, We show that there is the nonlocal body moment in the nonlocal elastic solids. The noniocal body moment causes the stress asymmetric and itself is caused by the covalent bond formed by the reaction between atoms. The theory developed in this paper is applied to explain reasonably that curves of dispersion relation of one-dimensional plane longitudinal waves are not similar with those of transverse waves.  相似文献   

16.
Strain gradient plasticity for finite deformations is addressed within the framework of nonlocal continuum thermodynamics, featured by the concepts of (nonlocality) energy residual and globally simple material. The plastic strain gradient is assumed to be physically meaningful in the domain of particle isoclinic configurations (with the director vector triad constant both in space and time), whereas the objective notion of corotational gradient makes it possible to compute the plastic strain gradient in any domain of particle intermediate configurations. A phenomenological elastic–plastic constitutive model is presented, with mixed kinematic/isotropic hardening laws in the form of PDEs and related higher order boundary conditions (including those associated with the moving elastic/plastic boundary). Two fourth-order projection tensor operators, functions of the elastic and plastic strain states, are shown to relate the skew-symmetric parts of the Mandel stress and back stress to the related symmetric parts. Consistent with the thermodynamic restrictions therein derived, the flow laws for rate-independent associative plasticity are formulated in a six-dimensional tensor space in terms of symmetric parts of Mandel stresses and related work-conjugate generalized plastic strain rates. A simple shear problem application is presented for illustrative purposes.  相似文献   

17.
非局部弹性直杆振动特征及Eringen常数的一个上限   总被引:5,自引:0,他引:5  
郑长良 《力学学报》2005,37(6):796-798
应用非局部连续介质理论推导了弹性直杆的振动方程,并采用分离变量法 进行求解,得到了振动方程的本征方程、模态函数及通解. 结果表明:非局部连续介质弹性 直杆的自振频率因非局部效应而降低,降低的幅度不仅与材料内禀长度相关,还与振动频率 的阶次相关;而且频率大小存在极限值,显示了与晶格点阵相同特性. 通过与Brillouin格 波结果比较,给出了Eringen非局部理论中材料常数的一个上限.  相似文献   

18.
Mindlin, in his celebrated papers of Arch. Rat. Mech. Anal. 16, 51–78, 1964 and Int. J. Solids Struct. 1, 417–438, 1965, proposed two enhanced strain gradient elastic theories to describe linear elastic behavior of isotropic materials with micro-structural effects. Since then, many works dealing with strain gradient elastic theories, derived either from lattice models or homogenization approaches, have appeared in the literature. Although elegant, none of them reproduces entirely the equation of motion as well as the classical and non-classical boundary conditions appearing in Mindlin theory, in terms of the considered lattice or continuum unit cell. Furthermore, no lattice or continuum models that confirm the second gradient elastic theory of Mindlin have been reported in the literature. The present work demonstrates two simple one dimensional models that conclude to first and second strain gradient elastic theories being identical to the corresponding ones proposed by Mindlin. The first is based on the standard continualization of the equation of motion taken for a sequence of mass-spring lattices, while the second one exploits average processes valid in continuum mechanics. Furthermore, Mindlin developed his theory by adding new terms in the expressions of potential and kinetic energy and introducing intrinsic micro-structural parameter without however providing explicit expressions that correlate micro-structure with macro-structure. This is accomplished in the present work where in both models the derived internal length scale parameters are correlated to the size of the considered unit cell.  相似文献   

19.
In order to simulate quasi-brittle failure in porous elastic solids, a continuum damage model has been developed within the framework of strain gradient elasticity. An essential ingredient of the continuum damage model is the local strain energy density for pure elastic response as a function of the void volume fraction, the local strains and the strain gradients, respectively. The model adopts Griffith’s approach, widely used in linear elastic fracture mechanics, for predicting the onset and the evolution of damage due to evolving micro-cracks. The effect of those micro-cracks on the local material stiffness is taken into account by defining an effective void volume fraction. Thermodynamic considerations are used to specify the evolution of the latter. The principal features of the model are demonstrated by means of a one-dimensional example. Key aspects are discussed using analytical results and numerical simulations. Contrary to other continuum damage models with similar objectives, the model proposed here includes the effect of the internal length parameter on the onset of damage evolution. Furthermore, it is able to account for boundary layer effects.  相似文献   

20.
具有非局部体力矩的非局部弹性理论   总被引:6,自引:0,他引:6  
高键  戴天民 《力学学报》1990,22(4):446-456
本文基于非局部连续统场论的公理系统,建立了具有非局部体力矩作用的非局部弹性理论,我们证明了,在非局部弹性固体中存在着非局部体力矩,非局部体力矩引起了应力的非对称和非局部体力矩是由材料中的共价键产生的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号