首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The applicability of mechanochemistry to produce uranium–lanthanoid mixed oxides is presented. Phase homogeneous uranium–cerium solid solutions of the type Ce x U1−x O2 (x = 0.3 ÷ 0.95) and polyphase systems containing La y U1−y O2+x (y = 0.12) were prepared by mechanochemical activation in air of sol–gel produced precursors. The possibility for synthesis of urania–lanthania solid solution by mechanochemical interaction of La2O3 with sol–gel produced U (IV,VI) oxide is established. The crystal structures of the obtained oxides before and after the mechanochemical treatment are analysed by the use of X-ray diffraction method. The size of the crystallites (8–16 nm), lattice parameters, crystallite strains and densities of the oxides are calculated by BRASS program for Rietveld calculation.  相似文献   

2.
A new type of extractant, sym-dibenzo-16-crown-5-oxyhydroxamic acid (HL) is introduced. The extractions of UO22+, Na+, K+, Sr2+, Ba2+ and Br- were studied with HL in chloroform. The results obtained show that UO22+ can be quantitatively extracted at pH values above 5, whereas the extractions of K+, Na+, Sr2+, Ba2+ and Br- are negligible in the pH range of 2 - 7. The dependence of the distribution ratio of U(VI) on both the concentration of the HL and pH are linear, and they have the same slope of 2. This suggests that U(VI) appears to form a 1:2 complex with ligand. Uranium(VI) can be selectively separated and concentrated from interfering elements such as Na, K, Sr and Br by solvent extraction with HL under specific conditions. The recovery of uranium is nearly 100% and the radionudear purity of uranium is greater than 99.99%. Therefore, neutron activation analysis has greatly improved the sensitivity and accuracy for the detection of trace uranium from seawater.  相似文献   

3.
We have investigated the performance of DFT in U(VI) chemistry. A large, representative selection of functionals has been tested, in combination with two ECPs developed in Stuttgart that have different-sized cores (60 and 78 electrons for U). In addition, several tests were undertaken with another 14 electron pseudopotential, which was developed in Los Alamos. The experimental database contained vibrational wavenumbers, thermochemical data, and (19)F chemical shifts for molecules of the type UF(6-n)Cl(n). For the prediction of vibrational wavenumbers, the large-core RECP (14 electrons) gives results that are at least as good as those obtained with the small-core RECP (32 electrons). GGA functionals are as successful as hybrid GGA for vibrational spectroscopy; typical errors are only a few percent with the Stuttgart pseudopotentials. For thermochemistry, hybrid versions of DFT are more successful than GGA, LDA, or meta-GGA. Marginally better results are obtained with a 32 electron ECP than with 14; since the experimental uncertainties are at least 25 kJ/mol for each reaction, the best functionals give results that are essentially indistinguishable from experiment. However, large-basis CCSD(T) results match experiment better than any DFT that we examined. Our findings for NMR spectroscopy are rather disappointing; no combination of pseudopotential, functional, and basis yields even a qualitatively correct prediction of trends in the (19)F chemical shifts of UF(6-n)Cl(n) species. Results yielded by the large-core RECP are, in general, slightly less bad than those obtained with the small core. We conclude that DFT cannot be recommended for predictions of NMR spectra in this series of compounds, though this conclusion should not be generalized. Our most important result concerns the good performance of the large-core Stuttgart pseudopotential. Given its computational efficiency, we recommend that it be used with DFT methods for the prediction of molecular geometries, vibrational frequencies, and thermochemistry of a given oxidation state. The hybrid GGA functionals MPW1PW91 and PBE0 give the best results overall.  相似文献   

4.
The distribution of radioactive pollutants, such as ~(222)Rn, U, Th and ~(226)Ra in the air, sur-face waters, soils and crops around the Lincang uranium mine, Yunnan Province, China, is studiedThe mechanical, geochemical and biogeochemical processes responsible for the transport andfate of the radioactive elements are discussed based on the monitoring data. The pollutants con-centrations of effluents from the mine tunnels were dependent on pH and SO_4~(2-) which were con-trolled by biochemical oxidation of sulfide in the ore/host rocks. Radon anomalies in air reached 4km from the tailings pile depending on radon release from the site, topography and climate. ~(238)Uand ~(226)Ra abnormities in stream sediments and soil were 40-90 cm deep and 790-800 m awaydownstream. Anomalies of radioactive contaminants of surface watercourses extended 7.5-13km from the discharge of effluents of the site mainly depending on mechanical and chemical proc-esses. There were about 2.86 ha rice fields and 1.59 km stream sediments contaminated. Erosionof tailings and mining debris with little or no containment or control accelerated the contaminationprocesses.  相似文献   

5.
This work studied a way to reclaim uranium from contaminated UO2 oxide scraps as a sinterable UO2 powder for UO2 fuel pellet fabrication, which included a dissolution of the uranium oxide scraps in a carbonate solution with hydrogen peroxide and a UO4 precipitation step. Dissolution characteristics of reduced and oxidized uranium oxides were evaluated in a carbonate solution with hydrogen peroxide, and the UO4 precipitation were confirmed by acidification of uranyl peroxo–carbonate complex solution. An agglomerated UO4 powder obtained by the dissolution and precipitation of uranium in the carbonate solution could not be pulverized into fine UO2 powder by the OREOX process, because of submicron-sized individual UO4 particles forming the agglomerated UO4 precipitate. The UO2 powder prepared from the UO4 precipitate could meet the UO2 powder specifications for UO2 fuel pellet fabrication by a series of steps such as dehydration of UO4 precipitate, reduction, and milling. The sinterability of the reclaimed UO2 powder for fuel pellet fabrication was improved by adding virgin UO2 powder in the reclaimed UO2 powder. A process to reclaim the contaminated uranium scraps as UO2 fuel powder using a carbonate solution was finally suggested.  相似文献   

6.
The X-ray diffraction (XRD) phase analysis of different solidified uranium-based fluoride systems ((LiF–NaF)eut–UF4; (KF–LiF–NaF)eut–UF4; (LiF–NaF)eut–UF4–ZrF4 and (KF–LiF–NaF)eut–UF4–ZrF4) were examined in order to provide the basis for pyro-electrochemical extraction of uranium in molten fluorides. Several uranium-based species (Na2UF6, Na3UF7, K2UF6, K3UF7, UO2, K3UO2F5) were identified in the solidified melts. The role of oxygen in argon atmosphere was found to be critical in the formation of uranium species during the melting and solidification. In order to reduce the accumulated level of free oxygen traces in our experiments, zirconium (in the form of ZrF4) was used inside the melt as an oxygen buffer. It was found that ZrF4 can really stabilize the uranium species by complexation and protects them against the oxygenation. The results of this work highlight the importance of oxygen removal for obtaining pure deposit in the electrorefinning of uranium.  相似文献   

7.
Journal of Radioanalytical and Nuclear Chemistry - Both uranium and beryllium are very important strategic metals and have been applied to many fields, such as nuclear industries, atomic energy,...  相似文献   

8.
Reactive metal oxides are conventionally reduced to metal by metallothermic reduction. This paper presents on the efficient reduction method based on the electrochemical reaction in a molten LiCl–Li2O electrolyte at 650 °C. An underpotential deposition of Li on uranium oxides was observed that enabled the mass electrochemical reduction of U3O8 to U. An advantage of using in-situ generated Li as a reductant is that a high-speed electrochemical reduction could be achieved with a wider operating voltage window when compared to a direct electrochemical reduction.  相似文献   

9.
An extractant is required in the recovery process to drive the uranium to a stage that enables it to be extracted using the extraction solvent. This paper proposes the composition of a composite extractant, N,N,N′,N′-tetrabutyl-3-oxapentane-diamide–HNO3 (TBODA–HNO3) as an extractant, to successfully achieve the objective using supercritical carbon dioxide (sc-CO2). The composite TBODA–HNO3 extractant has a chemical composition of TBODA(HNO3)1.0(H2O)1.5. The U(IV) in the UO2 containing solid phase is directly oxidized to U(VI) in the form of $ {\rm UO}_{2}^{2 + } $ in sc-CO2, which contains a CO2-soluble TBODA–HNO3 extractant at 200 atm and 50 °C. The resulting $ {\rm UO}_{2}^{2 + } $ /TBODA complex can be consequently extracted using acetone-modified sc-CO2. The chemical composition of the $ {\rm UO}_{2}^{2 + } $ /TBODA complex, which can be extracted by nonpolar sc-CO2, is proposed in the form of an ion pair: [UO2(TBODA)2]2+–2( $ {\rm NO}_{3}^{ - } $ ).  相似文献   

10.
A fission track technique was used as a sample preparation method for subsequent isotope abundance ratio analysis of individual uranium containing particles with secondary ion mass spectrometry (SIMS) to measure the particles with higher enriched uranium efficiently. A polycarbonate film containing particles was irradiated with thermal neutrons and etched with 6 M NaOH solution. Each uranium containing particle was then identified by observing fission tracks created and a portion of the film having a uranium containing particle was cut out and put onto a glassy carbon planchet. The polycarbonate film, which gave the increases of background signals on the uranium mass region in SIMS analysis, was removed by plasma ashing with 200 W for 20 min. In the analysis of swipe samples having particles containing natural (NBL CRM 950a) or low enriched uranium (NBL CRM U100) with the fission track–SIMS method, uranium isotope abundance ratios were successfully determined. This method was then applied to the analysis of a real inspection swipe sample taken at a nuclear facility. As a consequence, the range of 235U/238U isotope abundance ratio between 0.0276 and 0.0438 was obtained, which was higher than that measured by SIMS without using a fission track technique (0.0225 and 0.0341). This indicates that the fission track–SIMS method is a powerful tool to identify the particle with higher enriched uranium in environmental samples efficiently.  相似文献   

11.
12.
13.
This paper reports on initial efforts for uranium isotopic analysis using gamma-rays and X-ray fluorescence coincidence. In this study, a gamma–gamma coincidence spectrometry was developed. The spectrometry consists of two NaI(Tl) scintillators and XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The developed spectrometry was optimized according to the considerations of output count rate and gamma peak energy resolution. It has been demonstrated that the spectrometry provides an effective method of assessing the content of uranium isotopes for nuclear materials. The main advantages of this approach over the conventional gamma spectrometry include the fact that 235U enrichment can be graphically characterized by its unique coincidence “fingerprints”. The method could be further developed for fast uranium isotope verification with an established gamma–gamma coincidence spectral imaging library by various nuclear materials.  相似文献   

14.
A transmission-corrected -ray counting method has been employed for the assay of uranium in crude Na2U2O7 cakes produced at the Uranium Conversion Facilities. A 3×3 NaI(TI) detector was used in conjunction with a 400-channel analyzer. The observed count rate of the 1 MeV -ray emitted by the238U in the sample was corrected for sample self-attenuation, measured with a65Zn (-energy 1115 keV) transmission source. A calibration factor determined by measuring a standard of known amount of radioactive material in the same form and geometry as the unknown sample was used to convert the transmission corrected count rate to the amount of uranium in the weighted sample. Another -spectrometric method is described for the assay of the U-content in the MgF2 slag produced during the magnesiothermic reduction of UF4 to U-metal ingots at the natural U-conversion plant.  相似文献   

15.
I would like to take this opportunity to thank the editorial board of Journal of Natural Gas Chemistry for allowing me to write a preface for this special column. The articles appearing in this section are specially selected from the First International Conference on Natural Resources Engineering and Technology 2006 (INRET 2006). In line with the theme of JNGC, the selected articles are focused on natural gas or low hydrocarbon conversions to important chemicals, fuels and materials. The conference was held on July 24-25, 2006 in Marriott Putrajaya, Malaysia. It was organized by the Chemical and Biotechnology (ChemBio) Focus Group, under the Research Management Centre, Universiti Teknologi Malaysia.  相似文献   

16.
A set of six samples, collected worldwide from various uranium ore mining facilities, was analysed for uranium isotopic composition by high accuracy isotope mass spectrometry. The goal of this article was twofold: to measure isotopic variations between samples of different geographical origin and to produce calibrated isotope ratios with the smallest achievable uncertainty (as defined according to the ISO Guide to the Expression of Uncertainty in Measurement). In the first step, the molar ratio of the isotopes 235U and 238U, n(235U)/n(238U), was measured using a UF6-gas-inlet isotope mass spectrometer (VARIAN MAT 511). This instrument was calibrated against gravimetrically prepared synthetic isotope mixtures thus allowing SI-traceable measurements to be made. The ratios of the “minor isotopes” to 238U [n(234U)/n(238U) and n(236U)/n(238U)] were determined in a second step using a thermal ionisation mass spectrometer with high abundance sensitivity (Finnigan MAT262-RPQ-PLUS). The mass-fractionation correction was done internally using the result of the n(235U)/n(238U) measurement. As a result, the complete measured uranium isotopic composition is traceable to the SI system. For all ratios n(234U)/n(238U), n(235U)/n(238U), and n(236U)/n(238U) significant differences for samples of different origin were found. Regarding the n(236U)/n(238U) results, only two samples, one of them from the Oklo reactor in Gabon, showed significant presence of 236U. For all other samples an upper limit for n(236U)/n(238U) of about 6 × 10−10, mainly dependent on the instrumentation, was found. As a result of this study we propose values for the isotope abundances of natural uranium for the “Best Measurement from a Single Terrestrial Source” and the “Range of Natural Variations” in the IUPAC-table of the “Isotopic Composition of the Elements.”  相似文献   

17.
In the present paper we introduce a new methodology for the construction of numerical methods for the approximate solution of the one-dimensional Schr?dinger equation. The new methodology is based on the requirement of vanishing the phase-lag and its derivatives. The efficiency of the new methodology is proved via error analysis and numerical applications.  相似文献   

18.
The traceable and accurate measurement of biogas impurities is essential in order to robustly assess compliance with the specifications for biomethane being developed by CEN/TC408. An essential part of any procedure aiming to determinate the content of impurities is the sampling and the transfer of the sample to the laboratory. Key issues are the suitability of the sample container and minimising the losses of impurities during the sampling and analysis process. In this paper, we review the state-of-the-art in biogas sampling with the focus on trace impurities. Most of the vessel suitability studies reviewed focused on raw biogas. Many parameters need to be studied when assessing the suitability of vessels for sampling and storage, among them, permeation through the walls, leaks through the valves or physical leaks, sorption losses and adsorption effects to the vessel walls, chemical reactions and the expected initial concentration level. The majority of these studies looked at siloxanes, for which sampling bags, canisters, impingers and sorbents have been reported to be fit-for-purpose in most cases, albeit with some limitations. We conclude that the optimum method requires a combination of different vessels to cover the wide range of impurities commonly found in biogas, which have a wide range of boiling points, polarities, water solubilities, and reactivities. The effects from all the parts of the sampling line must be considered and precautions must be undertaken to minimize these effects. More practical suitability tests, preferably using traceable reference gas mixtures, are needed to understand the influence of the containers and the sampling line on sample properties and to reduce the uncertainty of the measurement.  相似文献   

19.
The applicability of Co(II), Ni(II), Fe(III), and Cr(III) ion labels to the immunochemical determination of ribonuclease, Candida albicans, Trichophyton rubrum, and Phoma betaeantigens was studied. The catalytic waves of hydrogen evolution, which occur in transition metal solutions in the presence of protein compounds, were used as analytical signals. The maximum catalytic effect depends on the pH, buffer capacity, and nature of buffer solution and on the nature of antigen to be determined. A new procedure was proposed for the immunochemical determination of the ribonuclease antigen using Co(II) ions as a label. The conditions of the formation and degradation of the antibody–antigen immune complex were found. The linear analytical range for the ribonuclease antigen was 0.005–1.0 mg/mL.  相似文献   

20.
On the territory of the abandoned uranium mine irovski vrh, Slovenia, indoor radon and gamma dose rate measurements were carried out in nineteen schools from February 10 to May 10, 1995, using scintillation cells and etched track detectors for radon and thermoluminescence dosimeters for gamma-ray detection. In five schools indoor radon levels exceeded 400 Bq·m-3, which is the proposed Slovene action level. The maximum average radon value of 1600 Bq·m-3 and the maximum gamma-dose rate of 172 Sv·month-1 were found in the same school. According to the ICRP 65 methodology, annual effective doses from radon decay products ranged from 0.05 to 6.10 mSv for pupils and from 0.04 to 4.90 mSv for teachers. Gamma dose rates ranged from 0.05 to 0.19 mSv·y-1 for pupils and from 0.07 to 0.27 mSv·y-1 for teachers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号