首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Cu(II) polymers of Hbidc (1H-benzimidazole-5,6-dicarboxylate), namely [Cu2(Hbidc)2(H2O)4·3H2O] n (1) and [Cu(Hbidc)] n (2), were synthesized under hydrothermal conditions by variation of the reaction temperature and characterized by physico-chemical, spectroscopic and single-crystal X-ray diffraction studies. At temperatures from 100 to 170 °C, we only obtained the 2-D structure compounds 1 and 2, in which the bridging mode of the Hbidc ligand increases from μ 3 to μ 5 and the number of water ligands decreases to 0. Both compounds have 3-D supramolecular architectures extended by hydrogen bonding and ππ interactions between the adjacent layers. Magnetic studies revealed that compound 1 shows weak antiferromagnetic properties and compound 2 exhibits ferromagnetic coupling between the two Cu(II) ions in the dimeric units.  相似文献   

2.
Six new metal-organic frameworks [Cu(obba)(bimb)·(obbaH(2))](n) (1), [Cu(obba)(bimb)](n) (2), [Zn(2)(obba)(2)(bimb)(2)(DMF)(2)(H(2)O)(3.5)](n) (3), [Ni(3)(2,2',4,4'-bptcH)(2)(bimb)(2)(H(2)O)(2)·(H(2)O)(2)](n) (4), [Ni(2)(bimb)(3)(H(2)O)(6)·(aobtc)·(DMF)(2)·(H(2)O)(2)](n) (5) and [Cd(3,3',4,4'-bptcH(2))(H(2)O)·(bimb)](n) (6), were obtained by reactions of 4,4'-bis(1-imidazolyl)biphenyl (bimb) and multi-carboxylic acids of 4,4'-oxybis(benzoic acid) (obbaH(2)), 2,2',4,4'-biphenyltetracarboxylate acid (2,2',4,4'-bptcH(4)), azoxybenzene-3,3',5,5'-tetracarboxylic acid (aobtcH(4)), and 3,3',4,4'-biphenyltetracarboxylate acid (3,3',4,4'-bptcH(4)) with corresponding metal salts under hydro/solvothermal conditions, respectively. Complexes 1-3 have entangled structures with different topologies: 1 is a 3-fold interpenetrating NbO three-dimensional (3D) network; 2 is a 3-fold interpenetrating dmp 3D net; 3 is a 6-fold interpenetrating dia 3D chiral net containing rare 1D helical chains with the same handedness. Complex 4 is an uninodal 6-connected network with a Sch?fli symbol of (4(8)6(4)8(3)) based on the trinuclear Ni(II) subunits, while complexes 5 and 6 are 1D chains. Interestingly, compound 6 represents the rare example of MOFs that exhibit high photocatalytic activity for dye degradation under visible light and shows good stability towards photocatalysis. Complexes 3 and 6 exhibit intense blue emissions in the solid state at room temperature whereas 3 appears to be a good candidate of novel hybrid inorganic-organic NLO material.  相似文献   

3.
A series of 6- and 18-armed dendritic polyallyl- and polyferrocenyl-containing bipyridine ligands were synthesized through the coupling reaction of 4,4′-bis(bromomethyl)-2,2′-bipyridine with AB3 and AB9 dendrons. All these bipyridine ligands were successfully characterized using standard physico-chemical techniques as well as MALDI-TOF mass spectrometric analysis. The complexation studies of these ligands toward RuCl2(bpy)2 indicated that, in contrast to the bulky 18-ferrocenyl bipyridine ligand 7, the 6-allyl 4 and the 18-allyl 5 bipyridine ligands react with Ru(bpy)2Cl2 to give the corresponding ruthenium(II) complexes 9 and 10. In the case of ligand 7, the steric bulk of the two nonaferrocenyl wedges at the 4,4′-position of the bipyridine moiety prevents the conversion of the transoid structure of the ligand to the cisiod structure needed for chelation to the metal. Thus, the 18-ferrocenyl ruthenium(II) dendrimer was not obtained. Metallodendrimers 9 and 10 have been characterized by a combination of analytical methods, especially MALDI-TOF mass spectrometric techniques. The hydrogenation of the 6-allyl ruthenium(II) dendrimer 9 in the presence of Pd/C catalyst gave the expected n-propyl complex 11. This reaction constitutes a new way for the direct synthesis of alkyl bipyridine metallodendrimers. The coordination of the alkene dendritic bipyridine ligand to the metal before the catalytic hydrogenation is absolutely necessary, because of their poisoning effect for the catalyst.  相似文献   

4.
Schiff bases o-vanilidene-1-aminobenzene (HL1) and o-vanilidene-2-methyl-1-aminobenzene (HL2) lead to the formation of mono- and bis-[(Cl)Zn(L1)] (1), [(Cl)Zn(L2)] (2), [(Cl)Hg(L1)] (3), [(Cl)Hg(L2)] (4), [Zn(L1)2] (5), [Zn(L2)2] (6), [Hg(L1)2] (7), and [Hg(L2)2] (8) complexes by reactions of zinc(II) and mercury(II) chlorides in different mole ratio(s). Complexes 18 have been characterized by elemental analyses (Zn, Hg, C, H, Cl, and N), melting point and spectral (IR, 1H-NMR), PXRD, molar conductivity measurement, and TGA. Conductivity measurements suggest non-electrolytes. Structural compositions have been assigned by mass spectral studies. Four-coordinate geometry may be assigned to these complexes tentatively. Structural study reveals that in 14 two metal centers are held together by two bridged (μ2-Cl) chlorides, whereas 58 contain two bidentate Schiff-base ligands around one metal-producing monomers.  相似文献   

5.
Treatment of a thiolato-bridged Ru(II)Ag(I)Ru(II) trinuclear complex, [Ag{Ru(aet)(bpy)(2)}(2)](3+) (aet = 2-aminoethanthiolate; bpy = 2,2'-bipyridine), with NaI in aqueous ethanol under an aerobic condition afforded a mononuclear ruthenium(II) complex having an S-bonded sulfinato group, [1](+) ([Ru(aesi-N, S)(bpy)(2)](+) (aesi = 2-aminoethanesulfinate)). Similar treatment of optically active isomers of an analogous Ru(II)Ag(I)Ru(II) trinuclear complex, Δ(D)Δ(D)- and Λ(D)Λ(D)-[Ag{Ru(d-Hpen-O,S)(bpy)(2)}(2)](3+) (d-pen = d-penicillaminate), with NaI also produced mononuclear ruthenium(II) isomers with an S-bonded sulfinato group, Δ(D)- and Λ(D)-[2](+) ([Ru(d-Hpsi-O,S)(bpy)(2)](+) (d-psi = d-penicillaminesulfinate)), respectively, retaining the bidentate-O,S coordination mode of a d-Hpen ligand and the absolute configuration (Δ or Λ) about a Ru(II) center. On refluxing in water, the Δ(D) isomer of [2](+) underwent a linkage isomerization to form Δ(D)-[3] (+) ([Ru(d-Hpsi-N,S)(bpy)(2)](+)), in which a d-Hpsi ligand coordinates to a Ru(II) center in a bidentate-N,S mode. Complexes [1](+), Δ(D)- and Λ(D)-[2](+), and Δ(D)-[3](+) were fully characterized by electronic absorption, CD, NMR, and IR spectroscopies, together with single-crystal X-ray crystallography. The electrochemical properties of these complexes, which are highly dependent on the coordination mode of sulfinate ligands, are also described.  相似文献   

6.
Six Schiff-bases HL1-HL4, L5 and L6 [HL1 = 2,6-bis[1-(2-aminoethyl)pyrolidine-iminomethyl]-4-methyl-phenol, HL2 = 2,6-bis[1-(2-aminoethyl)piperidine-iminomethyl]-4-methyl-phenol, HL3 = N-{1-(2-aminoethyl)pyrolidine}salicylideneimine, HL4 = N-{1-(2-aminoethyl)piperidine}salicylideneimine, L5 = 2-benzoyl pyridine-N-{1-(2-aminoethyl)pyrolidine}, L6 = 2-benzoylpyridine-N-{1-(2-aminoethyl)piperidine}] have been synthesized and characterized. Zn(II) complexes of those ligands have been prepared by conventional sequential route as well as by template synthesis. The same complexes are obtained from the two routes as evident from routine physicochemical characterizations. All the Schiff-bases exhibit photoluminescence originating from intraligand (π–π*) transitions. Metal mediated fluorescence enhancement is observed on complexation of HL1-HL4 with Zn(II), whereas metal mediated fluorescence quenching occurs in Zn(II) complexes of L5 and L6.  相似文献   

7.
Two coordination polymers, [Mn2(μ-L1)2(μ-N3)2]n (1) and [Mn(μ-HL2)(SCN)2]n (2), were assembled in a single-pot from MnCl2·4H2O, HL1 (2-acetylpyridine isonicotinoylhydrazone) or HL2 (2-acetylpyridine nicotinoylhydrazone) and ancillary ligand sources (NaN3 or NH4NCS). The products were fully characterized, including by single-crystal X-ray diffraction, which revealed a 2-D metal–organic layer in 1 and a 1-D zigzag coordination chain in 2. Both 1 and 2 are constructed from six-coordinate Mn(II) nodes that adopt distorted octahedral (MnN5O) environments; the adjacent nodes are driven by the μ-L1 and μ-N3 linkers in 1 or μ-HL2 linkers in 2 to form different metal–organic networks. Their topological classification was performed, disclosing the hcb and 2C1 topology in 1 and 2, respectively. Different weak non-covalent interactions promote dimensionality extension. Variable-temperature magnetic susceptibility measurements were carried out, revealing weak ferromagnetic and antiferromagnetic interactions in 1 and 2, respectively.  相似文献   

8.
Transition Metal Chemistry - A series of bipyridyl (Bpy) Pd(II) complexes with 3-hydroxyflavone (Fla) [PdBpyFlaR][BF4] (R=OCH3 (1), R=CH3 (2), R=H (3), R=Cl (4)) were prepared and characterized....  相似文献   

9.
Homo- and heterobimetallic complexes of composition [(bpy)(2)M(II)(H(2)Imbzim)M'(II)(bpy)(2)](ClO(4))(3)·nH(2)O, where M(II) = M'(II) = Os (1), M(II) = Ru and M'(II) = Os (2), H(3)Imbzim = 4,5-bis(benzimidazole-2-yl)imidazole, and bpy = 2,2'-bipyridine, have been synthesized and characterized using standard analytical and spectroscopic techniques. Both of the complexes crystallized in monoclinic form with the space group P2(1)/m for 1 and P2(1)/n for 2. The absorption spectra, redox behavior, and luminescence properties of the complexes have been thoroughly investigated. The complexes display very intense, ligand-centered absorption bands in the UV region and moderately intense metal-to-ligand charge-transfer (MLCT) bands in the visible region. The bimetallic complexes show two successive one-electron reversible metal-centered oxidations. The strong fluorescence of free H(3)Imbzim is completely quenched in the metal complexes by energy transfer to the metal-based units, which exhibit their characteristic MLCT phosphorescence. The luminescence data of the heterometallic complex 2 show that electronic energy transfer takes place from the ruthenium center to the osmium-based component. The anion binding properties of the complexes have been studied in solutions using absorption, emission, and (1)H NMR spectral measurements. The metalloreceptors act as sensors for F(-) and AcO(-) ions. Sensing studies indicate the presence of two successive anion-induced deprotonation steps, leading to the formation of [(bpy)(2)M(HImbzim)M'(bpy)(2)](2+) and [(bpy)(2)M(Imbzim)M'(bpy)(2)](+) species. Double deprotonation is also observed in the presence of hydroxide. The binding affinities of different anions toward the receptors have been evaluated. Cyclic voltammetry measurements carried out in acetonitrile have provided evidence in favor of anion-dependent electrochemical responses of the bimetallic metalloreceptors with F(-) and AcO(-) ions.  相似文献   

10.
Xien Liu  Kun Jin  Qinji Peng 《Tetrahedron》2005,61(23):5655-5662
A new molecular dyad, comprised of a zinc-porphyrin and a ruthenium(II) tris(bipyridine) complex linked through an amide bond has been synthesized and characterized by 1H, 13C NMR, UV-vis, mass-spectrometry and elemental analysis. The electrochemistry as well as the steady-state emission properties were investigated. The redox behavior of the dyad exhibits a favorable reversible characteristic. Substantial quenching of porphyrin emission was found when the Q band of 5 and 5-Zn was selectively photoexcited. This observation suggests a quenching mechanism with possible intramolecular electron transfer or energy transfer between the Ru(bpy)3 moiety and the porphyrin free-base or Zn porphyrin moieties.  相似文献   

11.
Two new polymeric azido-bridged manganese complexes of formulas [Mn(N3)2 (bpee)]n (1) and {[Mn(N3)(dpyo)Cl(H2O)2](H2O)}n (2) [bpee, trans-1,2-bis(4-pyridyl)ethylene; dpyo, 4,4'-dipyridyl N,N'-dioxide] have been synthesized and characterized by single-crystal X-ray diffraction analysis and low-temperature magnetic study. Both the complexes 1 and 2 crystallize in the triclinic system, space group P1, with a = 8.877(3) A, b = 11.036(3) A, c = 11.584(4) A, alpha = 72.62(2) degrees, beta = 71.06(2) degrees, gamma = 87.98(3) degrees, and Z = 1 and a = 7.060(3) A, b = 10.345(3) A, c = 11.697(4) A, alpha = 106.86(2) degrees, beta = 113.33(2) degrees, gamma = 96.39(3) degrees, and Z = 2, respectively. Complex 1 exhibits a 2D structure of [-Mn(N3)2-]n chains, connected by bpee ligands, whose pyridine rings undergo pi-pi and C-H...pi interactions. This facilitates the rare arrangement of doubly bridged azide ligands with one end-on and two end-to-end (EO-EE-EE) sequence. Complex 2 is a neutral 1D polymer built up by [Mn(N3)(dpyo)Cl(H2O)2] units and lattice water molecules. The metals are connected by single EE azide ligands, which are arranged in a cis position to the Mn(II) center. The 1D zipped chains are linked by H-bonds involving lattice water molecules and show pi-pi stacking of dpyo pyridine rings to form a supramolecular 2D layered structure. The magnetic studies were performed in 2-300 K temperature range, and the data were fitted by considering an alternating chain of exchange interactions with S = 5/2 (considered as classical spin) with the spin Hamiltonians H = -Ji sigma(S(3i)S(3i+1) + S(3i+1)S(3i+2)) - J2 sigmaS(3i-1)S(3i) and H = -Ji sigmaS(2i)S(2i+1) - J2 sigmaS(2i+1)S(2i+2) for complexes 1 and 2, respectively. Complex 2 exhibits small antiferromagnetic coupling between the metal centers, whereas 1 exhibits a new case of topological ferromagnetism, which is very unusual.  相似文献   

12.
2-Dimethylaminoethanol (dmea) reacted with tetraaqua-bis(saccharinato)cobalt(II) and -zinc(II) in n-butanol to yield the new complexes cis-[Co(sac)2(dmea)2] (1), and cis-[Zn(sac)2(dmea)2] (2) (sac?=?saccharinate). The complexes were characterized by elemental analyses, IR spectroscopy, DTA-TG and X-ray crystallography. Both complexes are isomorphous and crystallize in the monoclinic space group P21/c. The cobalt(II) and zinc(II) ions are coordinated by two neutral dmea ligands and two sac anions in a distorted octahedral environment. The dmea ligand acts as a bidentate N, O donor through the amine N and hydroxyl O atoms, while the sac ligand exhibits non-equivalent coordination, behaving as an ambidentate ligand; one coordinates to the metal via the carbonyl oxygen atom, while the other is N-bonded. The packing of the molecules in the crystals of both complexes is achieved by aromatic π(sac)–π(sac) stacking interactions, C–H?·?π interactions and weak intermolecular C–H?·?O hydrogen bonds involving the methyl groups of dmea and the sulfonyl oxygen atoms of the sac ligands. IR and UV spectra and thermal analysis are in agreement with the crystal structures.  相似文献   

13.
Six lanthanide(iii)-2,5-dihydroxy-1,4-benzenedicarboxylate frameworks, namely, [Ln(H(2)-DHBDC)(1.5)(H(2)O)(2)](n) (Ln = La (1) and Pr (2); H(4)-DHBDC = 2,5-dihydroxy-1,4-benzenedicarboxylic acid), {[Nd(H(2)-DHBDC)(1.5)(H(2)O)(3)](H(2)O)}(n) (3), {[Eu(H(2)-DHBDC)(NO(3))(H(2)O)(4)](H(2)O)(2)}(n) (4), and {[Ln(2)(H(2)-DHBDC)(2)(DHBDC)(0.5)(H(2)O)(3)](H(2)O)(4)}(n) (Ln = Gd (5) and Dy (6)), with four different structural types ranging from 1D chain, 2D layer to 3D networks have been synthesized and structurally characterized. Compounds La (1) and Pr (2) are isomorphous and exhibit 3D frameworks with the unique 1D tubular channels. Compounds Nd (3) and Eu (4) are 2D layer and 1D zigzag chain, respectively, which are further extended to 3D supramolecular frameworks through extensive hydrogen bonds. Isomorphous compounds of Gd (5) and Dy (6) are 3D frameworks constructed from secondary infinite rod-shaped metal-carboxylate/hydroxyl building blocks. While the hydroxyl groups as secondary functional groups in the 1D chain of Eu (4) and 2D layer of Nd (3) are not bonded to the lanthanide centers, the hydroxyl groups in the 3D frameworks of La (1), Pr (2), Gd (5), and Dy (6) participate in coordinating to lanthanide centers and thus modify the structural types of theses compounds. The magnetic data of compounds Pr (2), Nd (3), Gd (5), and Dy (6) have been investigated in detail. In addition, elemental analysis, IR spectra, powder X-ray diffraction (PXRD) patterns and thermogravimetric analysis of these compounds are described.  相似文献   

14.
New mixed ligand complexes of the following stoichiometric formulae: M(2-bpy)2(RCOO)2·nH2O, M(4-bpy)(RCOO)2·H2O and M(2,4’-bpy)2(RCOO)2·H2O (where M(II)=Zn, Cd; 2-bpy=2,2’-bipyridine, 4-bpy=4,4′-bipyridine, 2,4′-bpy=2,4′-bipyridine; R=C2H5; n=2 or 4) were prepared in pure solid-state. These complexes were characterized by chemical and elemental analysis, IR and conductivity studies. Thermal behaviour of compounds was studied by means of DTA, DTG, TG techniques under static conditions in air. The final products of pyrolysis of Cd(II) and Zn(II) compounds were metal oxides MO. A coupled TG/MS system was used to analyse of principal volatile products of thermal decomposition or fragmentation of Zn(4-bpy)(RCOO)2·H2O under dynamic air and argon atmosphere. The principal species correspond to: C+, CH+, CH3 +, C2H2 +, HCN+, C2H5 + or CHO+, CH2O+ or NO+, CO2 +, 13C16O2 + and 12C16O18O+ and others; additionally CO+ in argon atmosphere.  相似文献   

15.
Gao GG  Xu L  Wang WJ  Qu XS  Liu H  Yang YY 《Inorganic chemistry》2008,47(7):2325-2333
New Keggin-type cobalt(II)/nickel(II)-centered heteropolymolybdates, (C3H5N2)6[Co(II)Mo12O40]10H2O (1) and (NH4)3(C4H5N2O2)3[Ni(II)Mo12O40] (2), were isolated and characterized by IR, UV-vis, single-crystal X-ray diffraction, thermogravimetric, magnetic, as well as electrochemical analyses. The polyanion in the two compounds displays the well-known alpha-Keggin structure, which is composed of four Mo3O13 units formed by edge-sharing octahedra. Four Mo3O13 units connect each other by vertices, and the Co(2+) or Ni(2+) is located in the center. Magnetic measurements show that the central Co(2+) and Ni(2+) are in high spin states (with S = 3/2 and S = 1, respectively) exhibiting paramagnetic behaviors. Cyclic voltammetric experiments for 1 represent a quasi-reversible one-electron redox Co(3+)/Co(2+) couple and two four-electron reversible redox processes ascribed to Mo centers, while 2 only shows two four-electron redox processes attributed to Mo centers in pH = 0.5 H2SO4 solution.  相似文献   

16.
Copper(II) complexes (1-3) of a sterically constrained phenol-based tetradentate N(2)O(2) ligand 1,4-bis(2-hydroxy-3,5-dimethylbenzyl)piperazine (H(2)L) have been reported. The associated anions of the copper(II) ion precursors have profound influence on the stoichiometry of the products. Thus, with perchlorate ion, the product is a binuclear compound [Cu(2)L(2)] (1), while with coordinating anions viz. Cl(-) and N(3)(-), the products [Cu(3)L(2)Cl(2)(H(2)O)].1/2H(2)L (2) and [Cu(3)L(2)(N(3))(2)(CH(3)OH)].4H(2)O (3) have triangulo trinuclear composition. The syntheses, X-ray structures, and spectroscopic and magnetic properties of these complexes are described. Compound 1 has a noncentrosymmetric structure with a rectangular Cu(2)(OPh)(2) core. It appears to be a rare example of a phenolato-bridged Cu(II) dimer exhibiting ferromagnetic interactions (J = 0.93 cm(-)(1)), a behavior in agreement with the theoretical predictions but seldom observed experimentally. In compounds 2 and 3, the copper centers are triangularly disposed, and the molecules have a shape much like that of a butterfly. The terminal copper centers Cu(1) and Cu(2) in 2 and 3 have distorted square pyramidal geometry, connected to each other by a bridging chloro- (in 2) or azido ligand (in 3) in "end to end" fashion. The central copper center (Cu(3) in 2 and Cu in 3) in both the compounds has distorted square planar geometry. The separations between the metal centers, viz. Cu(1)...Cu(2), Cu(2)...Cu(3), and Cu(3)...Cu(1), are 4.826, 3.214, and 3.244 A, respectively, in 2. The corresponding distances in 3 are 5.590, 3.178, and 3.485 A, respectively. The overall magnetic behaviors in 2 and 3 are consistent with antiferromagnetic interactions between the spin centers. In 3, the exchange couplings between the terminal and central copper centers J(Cu(1))(-)(Cu) and J(Cu(2))(-)(Cu) appear to be equal (-234 cm(-)(1)), resulting in an S = (1)/(2) ground state at temperatures near or below 77 K.  相似文献   

17.
Gao Y  Zhao L  Xu X  Xu GF  Guo YN  Tang J  Liu Z 《Inorganic chemistry》2011,50(4):1304-1308
Reactions of lanthanide(III) perchlorate (Ln = Dy, Tb, and Gd), nickel(II) acetate, and ditopic ligand 2-(benzothiazol-2-ylhydrazonomethyl)-6-methoxyphenol (H(2)L) in a mixture of methanol and acetone in the presence of NaOH resulted in the successful assembly of novel Ln(2)Ni(2) heterometallic clusters representing a new heterometallic 3d-4f motif. Single-crystal X-ray diffraction reveals that all compounds are isostructural, with the central core composed of distorted [Ln(2)Ni(2)O(4)] cubanes of the general formula [Ln(2)Ni(2)(μ(3)-OH)(2)(OH)(OAc)(4)(HL)(2)(MeOH)(3)](ClO(4))·3MeOH [Ln = Dy (1), Tb (2), and Gd (3)]. The magnetic properties of all compounds have been investigated. Magnetic analysis on compound 3 indicates ferromagnetic Gd···Ni exchange interactions competing with antiferromagnetic Ni···Ni interactions. Compound 1 displays slow relaxation of magnetization, which is largely attributed to the presence of the anisotropic Dy(III) ions, and thus represents a new discrete [Dy(2)Ni(2)] heterometallic cubane exhibiting probable single-molecule magnetic behavior.  相似文献   

18.
Hydrothermal reaction of Co(II) salt with 1,4-di(1-imidazolyl)benzene (L1) and 4,4’-oxydiphthalic acid (H4OA) yields a new complex [Co3(HOA)2(L1)4(H2O)4] (I). [Ni(L2)2SO4] · 0.5H2O (II) can be obtained via the hydrothermal reaction of NiSO4 · 6H2O with 1,3-di(1H-imidazol-4-yl)benzene (L2). Complexes I and II have been characterized by single-crystal and powder X-ray diffraction (CIF files CCDC nos. 1019291 (I) and 1019292 (II)), IR, elemental, and thermogravimetric analyses. Complex I exhibits the uninodal six-connected 3D pcu framework structure of I with (412 · 63) topology; Complex II consists of the uninodal four-connected 2D sql (44 · 62) networks. In addition, magnetic property of I was investigated.  相似文献   

19.
The hydrothermal reaction of La(III), Cu(II) and 5-nitroisophthalic acid (H2NIPH) at different temperatures produced four novel coordination polymers, [LaCu(NIPH)(ONIPH)(H2O)4].H2O (1), [La2Cu(NIPH)4(H2O)6] (2), [La2Cu(NIPH)4(H2O)2] (3) and [LaCu(NIPH)2(HNIPH)(H2O)2].2H2O (4), (HONIPH = 2-hydroxy-5-nitroisophthalate), these 2D and 3D frameworks are the first La(III)-Cu(II) heterometallic frameworks based on infinite rod-shaped molecular building blocks. In 1, a 2D layer is composed of infinite La-O-C-O-Cu rods consisting of alternating [La2O14(CO2)2] and [Cu2O8] units by corner sharing. The 3D frameworks of 2-4 are constructed from different rod-shaped molecular building blocks, which are linked by NIPH ligands to form a pcu-type rod packing arrangement. Interestingly, HONIPH came from the in situ hydroxylation of H2NIPH in the hydrothermal reaction.  相似文献   

20.
Reaction of the Schiff base, 1-(4-methylimidazol-5-yl) phenylhydrazonopropane-2-one oxime (LH), with copper(II) perchlorate hexahydrate and copper(II) nitrate trihydrate in a 1 : 1 M proportion in methanol affords [Cu2L2(H2O)(ClO4)](ClO4) (1) and [Cu2L2(H2O)2](NO3)2] (2) in moderate yields. Both 1 and 2 have been characterized by elemental analysis, ESI-MS, FT-IR, UV–vis absorption spectroscopy, EPR, electric conductivity, and magnetic susceptibility measurements. The X-ray crystal structures of 1·CH3COCH3 and 2 have been determined. Both compounds are dinuclear copper(II) complexes, with each copper μ2-bridged by two oxime ligands in a μ2-η1,η2 fashion. Variable temperature magnetic studies on 1 and 2 show that both compounds are dominated by an antiferromagnetic coupling through the oxime bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号