首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A numerical optimization is presented to reduce the vibration and noise of a centrifugal fan volute. Minimal vibration was considered as the aim of the optimization, and the calculation of sound field induced by the vibration of the volute was only based on the final results of the optimization. After the three-dimensional unsteady flow simulation of a centrifugal fan, the parametric finite element model of the volute was created using the pressure fluctuations at blade passing frequency on the volute as external excitation forces. To validate the finite element model of the volute, natural frequencies and amplitudes of the normal velocities of the volute at blade passing frequency were measured. A good agreement was found between the numerical and the experimental results. Then, random method and first-order optimization method were applied in the optimization process. The numerical optimization of the volute was carried out using the local thickness of the volute as design variables and the quadratic sum of the nodal velocities as an objective function. Numerical optimization results show that the volute vibration is reduced by the optimization method. Finally, vibroacoustics of the volute before and after the optimization were calculated by direct boundary element method. The results show that the radiated power of the vibroacoustics of the volute is reduced significantly as well as the vibration of the volute after the optimization.This numerical optimization process provides a useful reference for vibroacoustic reduction of centrifugal compressors and centrifugal fans whose fluids should be kept strictly in a system without leakage.  相似文献   

2.
本文采用计算流体动力学和声类比相结合的混合方法对空调用离心风机进行流场以及声场的计算,同时进行风机风量和噪声的实验测量,验证所采用的数值计算模型和计算方法的有效性.针对原型非常规蜗壳,提取蜗壳中间截面型线进行直蜗舌的蜗壳设计,在此基础上设计了三种倾斜蜗舌的蜗壳.根据数值计算结果,对最优倾斜蜗舌进行了实验验证。经实验测试,风机在各个工况点风量均有提升,在最大风量点风量提升6.0%,噪声降低1.4 dB(A).数值分析风机内部流动特征及噪声特性,发现在蜗舌附近流动区域内湍流强度和涡量明显减小,在叶片通过频率处声功率谱密度以及噪声峰值明显下降,这也表明风机的旋转噪声得到了有效控制。  相似文献   

3.
In this work, an experimental study about the influence of some geometric features on the aeroacoustic behaviour of a squirrel-cage fan, used in automotive air conditioning units, has been carried out. The study focused on the effect of both the shape and the position of the volute tongue on the noise generated by the fan. Different geometric configurations were tested in order to compare the results. First of all, the performance curves were measured in a standardized test facility. Then, the acoustic behaviour of the fan was characterized by means of acoustic pressure measurements near the fan inlet. The comparison of the test results indicated a great dependence of both the shape and the position of the volute tongue and the noise generation. In particular, some geometric configurations of the volute tongue were able to reduce the fan noise generation without reducing the fan operating range.  相似文献   

4.
A numerical study of the aerodynamic and aeroacoustic behaviors of a backward curved blade centrifugal fan was conducted under two important flow conditions: BEP and 1.3 × BEP. Three-dimensional numerical simulations of the complete unsteady flow field for the whole impeller-volute configuration were used to determine the aeroacoustic sources. To locate the unsteady flow and perturbations, the near field wall pressure fluctuations at different strategic points on the volute were computed using the URANS approach. Thus the intensities and positions of the aeroacoustic sources were identified by analyzing frequency spectra. The aeroacoustic sources caused by fluctuations in the interactions of the flows leaving the impeller and volute were close to the volute tongue, and the most effective noise sources related to the flow rate were near the impeller shrouds. In addition, the unsteady flow variables provided by CFD calculations were used as inputs in the Ffowcs Williams-Hawkings equation to estimate the noise tones of the fan. The aeroacoustic calculation results showed that the volute noise was much larger than the blade noise, and the noise mainly propagated from the outlet duct of the fan. Moreover, to account for the noise propagation, three calculation methods were used by applying different solid boundaries. Compared with the other methods, the FEM method, which accounted for the complex solid boundaries, produced good agreement and showed that the complex solid boundaries cannot be neglected in aeroacoustic predictions. The calculation results showed good agreement with the experimental results.  相似文献   

5.
Many previous researches have concentrated on the noise of backward-curved (BC) blades and forward-curved (FC) multi-blade centrifugal fans. In this paper, an experimental study has been carried out to study the noise reduction of an industrial FC blades centrifugal fan. First of all, the performance and noise characteristics of the FC centrifugal fan were tested to compare the similarities and differences from those of BC blades and FC multi-blade centrifugal fans. And then, some different volute geometric configurations were carried out in order to study the effects of inclined volute tongue, impeller blade-tongue clearance, hub-volute clearance and their coupling effect to the performance and noise of the FC blades centrifugal fan. The aim of many different experimental tests is to validate whether the effects of different modifications to fan performance and noise are additive and to find a good impeller-volute matching to reduce the centrifugal fan noise without reducing performance. The experimental results show that a good coupled modification not only could reduce the fan noise but also could advance the fan performance and extend the operating range.  相似文献   

6.
空腔流动的大涡模拟及气动噪声控制   总被引:3,自引:0,他引:3  
大涡模拟(LES)和三维的Ffowcs Williams-Hawkings声学比拟方法相结合,研究空腔过流的一种噪声控制措施.空腔的底板/后墙使用多孔壁板,因此流体可以穿透空腔壁面,多孔效果使用Darcy压力-速度关系模拟.声源流场由LES计算,声辐射和远声场由声学比拟获得.结果表明,这种措施有效地减弱了空腔内的压力脉动和远场声辐射,低频脉动Rossiter模数对应的波动幅值被有效抑制,声源中偶极子占优项大幅度减小,从而抑制了声辐射.  相似文献   

7.
Fan is one of the main noise sources of the room air-conditioners. Axial flow fans are widely used in the outdoor unit of split type air-conditioners. The interaction between the fan and the heat exchanger should be taken into consideration. However, only a few researches have been carried out on predicting the aeroacoustic noise because of the difficulty in obtaining detailed information of the flow field. This paper is to understand the generation mechanism of sound and to develop a prediction method for the flow field and the acoustic pressure field of the outdoor unit. Acoustic measurement is performed in a semi-anechoic chamber. Effects of each components is analyzed. Based on commercial computational fluid dynamics (CFD) code, Fluent, Fukano’s model is used to predict the overall sound pressure level of broadband noise. The predicted sound pressure levels based on original Fukano’s model are 7.66 dB and 7.42 dB lower than measurement results at 780 rpm and 684 rpm, respectively. And the errors are about 13%. However, when wake width and relative velocity are both calculated by numerical simulations and the distance to blade trailing edge is taken into consideration, the difference of sound pressure level between measurement and prediction is less than 3.4 dB and errors less than 5.5% while the distance is less than 10 mm. Thus, the distance to blade trailing edge should also be an important parameter for Fukano’s model. In comparison with experimental results, it is clearly shown that the Fukano method based on numerical simulation can provide more accuracy than the original Fukano model and numerical results are in a reliable level.  相似文献   

8.
多翼离心风机的三维数值分析   总被引:14,自引:1,他引:13  
本文对一前弯多翼离心风机的内流场进行了三维数值分析。结果显示蜗壳内部的最大压力沿着轴线方向分布在不同的圆周位置,叶轮内部蜗舌上游区域存在着进口旋涡,蜗舌附近存在着明显的从叶片出口到进口的逆向回流,蜗舌间隙中存在着间隙涡,本文同时给出了一些典型位置上的速度和静压沿轴向的分布曲线,为验证本计算方法的可靠性,计算的流量和压力特性曲线和实验结果进行了比较,吻合良好。  相似文献   

9.
You Li  Jie Tian  Zhaohui Du 《Applied Acoustics》2010,71(12):1142-1155
The experimental and numerical studies have been carried out to investigate the blade passage frequency (BPF) noise of a cross-flow fan (CFF) with the block-shifted impeller. Firstly, the aeroacoustic and aerodynamic features about the five different block-shifted impellers have been obtained experimentally. Secondly, the dynamic pressure sensors were put in the noise generating surfaces to investigate the pressure fluctuations generated by the shifted blocks in the near-field through the cross-correlation analysis. Thirdly, the two-dimensional (2D) unsteady flow field has been simulated by commercial CFD software and the vortex flow patterns and the unsteady force of the blade have been analyzed to detect the noise source about the CFF. Finally, the noise properties about the CFF were predicted by a hybrid method through the Farassat’s equation and the surface pressure fluctuations were provided by the CFD simulations. A simplified theory model has also been built up at the same time. The comparisons are made between the results of hybrid method and the theory model to validate the correctness of the noise prediction methods. The accuracy of these results was also evaluated by the corresponding experimental ones. The results indicate that the impellers with different block-shifted angles are the same in aerodynamic performance but different in the BPF noise. The relations between the shifted angles and the BPF noise levels have been predicted and discussed for the noise reduction.  相似文献   

10.
本文采用Navier-Stokes方程和标准k-ε两方程,对分体空调室内机(包括换热器和横流风机)整体系统,以水蒸汽和干空气两种气体为介质,进行了等温流动和实际工况流动的双流体三维数值模拟和研究.两种气体在叶轮的进口面上不均匀分布,叶轮轴向的压强和速度分布存在强度和位置的差异.采用密度干扰方法对水蒸汽的凝结参数近似处理,给出了水蒸汽体积分数和湍流强度在换热器域的分布、混合物温度分布等内流特性.与实验结果相比,双流体模拟的工作点外特性匹配较好.同时,对蜗舌间隙参数变化对性能的影响做了说明.  相似文献   

11.
In spite of a low circumferential Mach number the sound of isolated centrifugal fan impellers is sometimes dominated by distinctive tones at blade passing frequency (BPF) and integer multiples. This paper reports on an experimental and numerical investigation intended to unveil the tone generating mechanism. The sound spectra from three impellers operating at a large range of speed were measured and decomposed into Strouhal and Helmholtz number dependent functions. This led to the preliminary conclusion that the BPF related tones are exclusively flow-induced. Based on hot-wire and blade pressure fluctuation measurements and a subsequent correlation analysis, coherent flow structures different from those associated with the principal azimuthal flow pattern due to the blades were detected. Eventually a numerical three-dimensional unsteady flow simulation revealed an inlet vortex. It takes on a helical form, with the vortex core slowly varying its position with respect to the impeller center. As the blades cut through that quasi-stationary helical vortex they encounter blade force fluctuations, producing the BPF tones. Slow spin of the vortex core and slow variation of vortex strength were identified as the reasons for amplitude modulation of the BPF tone.  相似文献   

12.
During the last 50 years extensive experimental investigation has been carried out on the chemical effects of ultrasound, but limited work has been reported on modeling. This paper presents a new model in which a numerical calculation of the three-dimensional linear sound pressure field distribution in a commonly used sonoreactor containing three transducers is carried out. In this model the inhomogeneous three-dimensional time-dependent wave equation was solved using the finite difference approach. The modeled results are then compared with the experimentally measured values, and the agreement, in general, is found to be good. Further, our modeling studies have an advantage, since they clearly describe the continuous sound pressure field structure, unlike previously reported results in which some information is missing due to limited intermittent measured points.  相似文献   

13.
旋流泵内颗粒分布及对盐析特性的影响   总被引:2,自引:0,他引:2  
对旋流式模型泵内部两相流场进行了非定常计算,获得了盐析晶体颗粒在泵内的体积浓度分布结果,并对颗粒迁移规律进行了分析.旋流泵内晶体颗粒浓度分布较稳定.在叶轮内,颗粒集中于叶片工作面附近;无叶腔中,颗粒更易向蜗壳壁面迁移.无叶腔内的浓度远大于叶轮内,且呈良好的轴对称分布.颗粒存在提供了二次成核与非均相成核的机会,加速了盐析进程.泵内盐析层最初在蜗壳内壁及叶片工作面形成并不断增厚,最终堵塞流道.  相似文献   

14.
Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.  相似文献   

15.
A coordinated experimental and numerical simulation effort is carried out to improve our understanding of the physics of acoustic liners in a grazing flow as well our computational aeroacoustics (CAA) method prediction capability. A numerical simulation code based on advanced CAA methods is developed. In a parallel effort, experiments are performed using the Grazing Flow Impedance Tube at the NASA Langley Research Center. In the experiment, a liner is installed in the upper wall of a rectangular flow duct with a 2 in. by 2.5 in. cross section. Spatial distribution of sound pressure levels and relative phases are measured on the wall opposite the liner in the presence of a Mach 0.3 grazing flow. The computer code is validated by comparing computed results with experimental measurements. Good agreements are found. The numerical simulation code is then used to investigate the physical properties of the acoustic liner. It is shown that an acoustic liner can produce self-noise in the presence of a grazing flow and that a feedback acoustic resonance mechanism is responsible for the generation of this liner self-noise. In addition, the same mechanism also creates additional liner drag. An estimate, based on numerical simulation data, indicates that for a resonant liner with a 10 percent open area ratio, the drag increase would be about 4 percent of the turbulent boundary layer drag over a flat wall.  相似文献   

16.
本文在设计工况下对部分流泵蜗壳壁面静压进行了实验测量,同时详细研究了部分流泵的外特性。结果表明, 部分流泵内流非定常特性强烈,非定常计算结果能够反映其内流的实质,并且可以准确预测外特性;其瞬时效率的变化主要是由于蜗壳与叶轮的相互作用。本文结论为进一步研究部分流泵内流现象、提高效率、减少水利损失提供了一定的理论依据。  相似文献   

17.
Centrifugal fans are widely used and the noise generated by these machines causes one of the serious problems. In general, the centrifugal fan noise is often dominated by tones at blade passage frequency and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cut-off in the casing. However, only a few researches have been carried out on predicting the noise because of the difficulty in obtaining detailed information about the flow field and considering the scattering effect of the casing. The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the unsteady flow field and the acoustic pressure field of the centrifugal impeller. A discrete vortex method is used to model the centrifugal impeller and a wedge and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. In order to consider the scattering and diffraction effects of the casing, Kirchhoff-Helmholtz boundary element method (BEM) is developed. The source of Kirchhoff-Helmholtz BEM is newly developed, so the sound field of the centrifugal fan can be obtained. A centrifugal impeller and wedge are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound. The radiated acoustic field shows the diffraction and scattering effect of the wedge.  相似文献   

18.
使用多孔蜗舌的贯流风机   总被引:1,自引:0,他引:1  
将贯流风机的蜗舌替代为多孔板与容腔组合的结构,定性地研究其控制气动噪声的可行性。通过对气动特性和辐射声信号的实验测量,结合内部流场的非稳态雷诺平均数值模拟,分析了这种蜗舌改造对贯流风机的整体特性和内部流动特征的影响,结果表明多孔蜗舌对贯流风机的压力-流量曲线作用并不明显,但对风机的噪声有着重要的影响,改变蜗舌迎风面的穿孔率可以有效地控制贯流风机的噪声。  相似文献   

19.
A laser pistonphone for the absolute calibration of microphones at low frequencies has been developed at UME. The motion of an electro-dynamically driven piston in a small close cavity produces a sound pressure. Accurate measurement of the piston displacement, by self-mixing interferometry, enables this sound pressure to be calculated, and consequently the pressure sensitivity of a microphone, exposed to this sound pressure, to be determined. Absolute calibrations of type LS1P and WS1P microphones have been carried out with an uncertainty of less than 0.15 dB. The performance of the laser pistonphone has been validated by comparing the measured microphone sensitivities with those obtained by the closed coupler reciprocity method.  相似文献   

20.
The influence of balcony depth and parapet form on the acoustical performance of building facades close to roadways have been investigated. Various depths and two inclinations of parapet have been modeled on an eight floor building. Pyramid ray-tracing simulations and scale model measurements have been carried out. The predicted and measured A-weighted sound pressure level reductions over the balcony back wall and in free field conditions have been compared. The results have been used to derive empirical equations for predicting protection as a function of geometrical parameters. The protection obtained by various parapet depths ranges between 4 and 8 dB(A), while an additional protection of between 0.5 and 4 dB(A) can be obtained by inclining the parapets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号