首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photo‐oxidation of syndiotactic polypropylene–sPP/organoclay nanocomposites was performed. Nanocomposites were prepared in situ by melt compounding of sPP, compatibilizer (iPP grafted with maleic anhydride–iPP‐g‐MAN) and organoclay filler ME C18 (modified with octadecyl ammonium chains in intergaleries of layered silicate, of which silicate layers (about 1 nm thin) were exfoliated). The influence of ME C18 nanoparticles alone (in content region 1 to 15 wt%) and together with compatibilizer iPP‐g‐MAN on the photostability of the sPP nanocomposite was studied. It was found that the silicate ME C18 nanoparticles alone catalyze the photooxidation and shorten the induction period of photo‐oxidation to one fourth (at the content of 5 wt% of ME C18) in comparison with unfilled sPP) and the presence of compatibilizer supports the photo‐oxidation of sPP nanocomposite. The ME C18 nanoparticles decrease the efficiency of UV stabilizers. The rate of photo‐oxidation of sPP/clay nanocomposite after the induction period is significantly higher than unfilled sPP. The mechanism of photo‐oxidation is discussed.  相似文献   

2.
Summary: Nanocomposite materials were obtained by blending multi‐wall carbon nanotubes (CN), obtained by acetylene catalytic chemical vapour deposition (CVD) on Co/Fe‐modified NaY zeolite, with syndiotactic poly(propylene) (sPP). The nanotubes, well dispersed in the polymer matrix, favour the crystallization of the sPP helical chains and significantly improve the sPP thermal stability either in nitrogen or in air. The morphology of the sPP affects the behaviour of the sPP degradation in air.

Thermogravimetric analysis in air of pure sPP and the nanocomposite material.  相似文献   


3.
This work examines the influence of the amount of silver nanoparticles added to polyacrylonitrile spinning solutions on their rheological properties as well as the structure and properties of the fibers produced. The influence of the amount of silver nanoparticles on the supramolecular structure of nanocomposite polyacrylonitrile precursor fibers, their porosity, as well as thermal and tensile strength properties was determined. The distribution of the nano‐ additive in fiber cross‐sections and on the surface was estimated. It was found that the addition of silver nanoparticles to polyacrylonitrile precursor fibers in an amount of up to 1.5% does not cause a decrease in the susceptibility of the fiber matter to deformation at the drawing stage. The produced fibers were characterized by an increased total volume of pores of 0.35 cm3/g and tenacity of more than 34 cN/tex. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Poly(L ‐lactic acid)/poly(D ‐lactic acid) (PLLA/PDLA) blended with plasticizer poly(ethylene glycol) and nucleation agent TMC‐306 as‐spun fibers were prepared by melt spinning. The posttreatment was applied by hot drawing at 70°C and then heat‐treating at different temperatures for 30 minutes. In the process of hot drawing, orientation induced the further formation of the sc crystals and increased the degree of crystallinity of drawn fibers. When the hot drawing ratio reached 3 times, the properties of the fibers were relatively better. The highly oriented fibers containing pure sc crystals with high crystallinity were obtained by heat‐treating at a temperature above the melting point of α crystals. The posttreated PLLA/PDLA fibers with poly(ethylene glycol) and TMC‐306 (LDTP) obtained by hot drawing to 3 times at 70°C and then annealing at 170°C for 30 minutes exhibited the best antioxidative degradation and heat resistance properties. The initial decomposition temperature (T5%) and heat resistance of posttreated LDTP fiber were about 94°C and 20°C higher than those of the commercial PLLA fiber, respectively.  相似文献   

5.
A comparative study of the structure and mechanical and thermal characteristics of nanocomposite oriented fibers based on poly(vinyl alcohol) impregnated with the nanodiamonds prepared by detonation synthesis and fibers based on the initial unmodified polymer has been performed. The conditions and regimes of gel spinning of the nanocomposite fibers containing highly dispersed nanosized filler without its aggregation are defined. The introduction of nanosized filler particles up to 7 vol % is found to entail no marked changes in the temperature intervals of glass transition and melting in the corresponding DSC thermograms. In this case, the amorphous-crystalline structure of the matrix polymer likewise remains practically unchanged. Under the selected conditions of gel spinning, the resultant nanocomposite fibers with comparable draw ratios are characterized by a higher longitudinal elastic modulus, close values of breaking strength, and lower values of elongation at break as compared with those observed for the fibers based on the initial unmodified polymer. The nanomodified fibers show promise as reinforcing elements in construction materials for various purposes.  相似文献   

6.
In this research, thermoresponsive and conductive fibers with core‐sheath structure were fabricated by coaxial electrospinning. For preparing the spinning sheath solution, poly‐(N‐isopropylacrylamide‐co‐N‐methylolacrylamide) (PNN) copolymer having thermoresponsive and cross‐linkable properties was synthesized by free‐radical polymerization using redox initiators; it was then mixed with the conductive poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) at different weight ratios in water. On the other hand, poly(butyl acrylate‐co‐styrene) (PBS) copolymer synthesized by emulsion polymerization was dissolved in chloroform and used as the spinning core solution. After electrospinning, the fibers were treated at 110 °C for 1 h to cross‐link the PNN portion in the sheath for strengthening the fibers. Well‐defined core‐sheath fibers were observed from SEM pictures; the outside and inside (core) diameters were 568 ± 24 and 290 ± 40 nm, respectively, as determined from TEM pictures. The fiber mats were further doped by DMSO to enhance their conductivity. For the fiber mat with the weight ratio of PEDOT:PSS/PNN at 0.20 in the sheath, its surface conductivity could reach 29.4 S/cm. In addition, the fiber mats exhibited thermoresponsive properties that both swelling ratio and electric resistance decreased with temperature. Furthermore, the fiber mats exhibited improved flexibility as evaluated via bending test. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1299–1307  相似文献   

7.
The primary use of poly(acrylonitrile) (PAN) fibers, commonly referred to as acrylic fibers, is in textile applications like clothing, furniture, carpets, and awnings. All commercially available PAN fibers are processed by solution spinning; however, alternative, more cost‐effective processes like melt spinning are still highly desired. Here, the melt spinning of PAN‐co‐poly(methyl acrylate) (PMA) plasticized with propylene carbonate (PC) at 175°C is reported. The use of methyl acrylate (MA) as comonomer and PC as an external plasticizer renders the approach a combination of internal and external plasticization. Various mixtures of PAN and PC used in this work were examined by rheology, subjected to melt spinning, followed by discontinuous and continuous washing, respectively. The best fibers were derived from a PAN‐co‐PMA copolymer containing 8.1 mol‐% of MA having a number‐average molecular weight M n of 34 000 g/mol, spun in the presence of 22.5 wt.‐% of PC. The resulting fibers were analyzed by scanning electron microscopy and wide‐angle X‐ray scattering (WAXS), and were subjected to mechanical testing.  相似文献   

8.
High‐molecular‐weight poly(vinyl alcohol) (PVA)/sodium alginate (SA)/ silver nanocomposite was successfully prepared via electrospinning technique. Water‐based colloidal silver in a PVA/SA blend solution was directly mixing without any chemical and structural modifications into PVA/SA matrix to form an organic‐metallic nanocomposite. The effect of the addition of silver colloidal solution on the PVA/SA/silver nanocomposite was investigated through a series of experiments varying molecular weight of PVA and electrospinning processing parameters such as concentration of PVA solution, PVA/SA blend ratio, applied voltage, and tip‐to‐collector distance. In the case of PVA with number‐average degree of polymerization of 1700, by increasing the amount of SA in spinning solution, the morphology was changed from fine uniform fiber to beaded fiber or bead‐on‐string fiber structure. Increase of the amount of silver colloidal solution resulted in higher charge density on the surface of ejected jet during spinning, thus more electric charges carried by the electrospinning jet. As the charge density increased, the diameter of the nanocomposites became smaller. Transmission electron microscopy images showed that the dense silver nanoparticles were well separately dispersed in PVA/SA matrix. Energy‐disperse X‐ray analysis indicated that carbon, oxygen, natrium, and silver were the principle element of PVA/SA/silver nanocomposite. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1916–1926, 2009  相似文献   

9.
This work focuses on the study of uniaxial elongational flow and its effects on morphology and stiffness of polyamide-6 based nanocomposites prepared by melt compounding. The elongational flow characterization was realized by converging flow method and fiber spinning technique. During the haul-off tests, fibers of the neat polyamide-6 and the hybrids (at 3 and 6 wt% of silicate) were collected at different draw ratios. Mechanical properties of the produced fibers were investigated and correlated to their nanostructure through analytical techniques sensitive to different aspects of morphology, such as DSC and TEM analysis. Rheological results, obtained with a capillary rheometer, indicate that the shear viscosity decreases with the silicate loading, while the extentional viscosity increases. Moreover, the presence of the silicate in polymer matrix leads to enhancements of draw-down force and reduction of the breaking draw ratio. In hybrid fibers an enhanced degree of exfoliation of the filler was observed upon drawing. Moreover, DSC analyses suggest that the crystalline structure of the fibers is the result of two opposite effects: the presence of the silicate which stabilizes the γ form and the drawing which promotes the α crystal phase. The degree of silicate exfoliation and the amount of the different crystal phases strongly affect the tensile properties of the fibers.  相似文献   

10.
The effects of high‐speed melt spinning and spin drawing on the structure and resulting properties of bacterial generated poly(3‐hydroxybutyrate) (PHB) fibers were investigated. The fibers were characterized by their degree of crystallinity by differential scanning calorimetry (DSC) and wide‐angle X‐ray scattering (WAXS), their orientation by WAXS, and the textile physical properties. The WAXS studies revealed that the fibers spun at high speeds and high draw ratios possessed orthorhombic (α modification) and hexagonal (β modification) crystals, the latter as a result of stress‐induced crystallization. The fiber structures formed during these processes were fibril‐like as the atomic force microscopy images demonstrated. The maximum physical break stress, the modulus, and the elongation at break observed in the fibril‐like spin drawn fibers were about 330 MPa, 7.7 GPa, and 37%, respectively. The fibers obtained by a low draw ratio of 4.0 had spherulitic structures and poor textile physical properties. The PHB pellets were analyzed by their degradation during the processes of drying and spinning and by their thermal and rheological properties. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2841–2850, 2000  相似文献   

11.
In this research, the possibility of producing and processing nanocomposite polypropylene filament yarns with permanent antimicrobial efficiency has been assessed by comparing two different methods. Therefore two approaches were used to mix various blending contents of antimicrobial agents based on silver/TiO2 nano particles with PP: 1) mixing of PP powder and inorganic nanocomposite powder as an antibacterial agent with the appropriate concentration in a twin screw extruder, preparing modified granules and feeding them to the melt spinning machine, 2) producing masterbatch by a twin screw extruder and blending it with PP in the melt spinning process. In both methods, pure PP and all other combined samples had an acceptable spinnability at the spinning temperature of 240 °C and take-up speed of 2000 m/min. After producing as-spun filament yarns by a pilot plant melt spinning machine, samples were drawn, textured and finally weft knitted. Physical and structural properties of as-spun and drawn yarns with constant and variable draw ratios were investigated and compared. Moreover, the DSC, SEM and FTIR techniques have been used for samples characterization. Finally antibacterial efficiency of knitted samples was evaluated. The experimental results indicated that the maximum crystallinity reduction of modified as-spun yarns reached 5%. But by applying method 2 (masterbatch), crystallinity of modified as-spun yarns remained unchanged compared to pure yarn. However, drawing procedure has compensated this difference. By applying the second method, the drawing generally improved the increase of tenacity and modulus of modified fibers, whereas in method 1 the opposite effect was noticed in the case of constant draw ratio. Although the biostatic efficiency of nanocomposite fibers was excellent in both methods, modified fabrics obtained from method 1 showed higher bioactivity.  相似文献   

12.
Poly(vinyl alcohol) (PVA)/attapulgite (AT) nanocomposite fibers have been prepared by wet spinning. The morphology and mechanical properties of the modified PVA fibers have been characterized with transmission electron microscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), birefringence measurements, and mechanical testing. The PVA/AT nanocomposite fibers show much higher tensile strength, initial modulus, and work to break than pure PVA fibers with the same draw ratio. SEM observations demonstrate that the AT nanorods can align orderly along the fiber axis by stretching and have good adhesion to the fiber matrix. The results of birefringence measurements prove that the modified fibers have higher orientation than pure PVA fibers after stretching. The results of DSC analysis indicate that the crystallinity of the PVA fibers can be increased by the addition of AT. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1995–2000, 2006  相似文献   

13.
The preparation of polyolefin‐based stereoregular diblock copolymers by postpolymerization of ethenyl‐capped syndiotactic polypropylene‐based propylene/norbornene copolymer (sPP‐based P‐N copolymer) led to the successful generation of a structurally uniform stereoregular diblock copolymer for self‐assembly studies. The ethenyl‐capped prepolymer was prepared by conducting propylene/norbornene copolymerization in the presence of Me2C(Cp)(Flu)ZrCl2/MAO. Ozonolysis of ethenyl‐capped sPP‐based P‐N copolymer provided the formyl group end‐capped, end‐functionalized prepolymer with a quantitative functional group conversion ratio. Subsequently, connecting the formyl end‐group of the stereoregular prepolymer by coupling with living anionic polystyrene resulted in the high yield production of stereoregular diblock copolymer (sPP‐based P‐N‐block‐polystyrene), which is difficult to prepare by other methods. The resulting stereoregular diblock copolymer possesses precise chemical architecture to self‐organize into consistent nanostructures as evidenced by transmission electron microscopy and small angle X‐ray scattering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4843–4856, 2008  相似文献   

14.
The preparation of thermo-crosslinking hydrogel fibers composed of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) was presented. The hydrogel fiber was prepared by extruding the spinning dope from in situ polymerization of acrylic acid in the presence of PVA into coagulating bath of saturated ammonium sulfate aqueous solution. The network was formed by thermally heating the dried fibers under vacuum. The final hydrogel fibers exhibit pH-sensitive behavior and show hysteresis loop in the pH range from 2.5 to 12.5. The pH value at which the swelling ratio of the fiber had a jump shifted to lower value with increasing the PAA content within the network. Increasing the heating temperature and time for the fibers, the swelling ratio decreased and the jump point pH shifted to higher pH value. The oscillatory swelling/contracting behavior of the hydrogel fiber exhibited a well reversible pH-responsive property.  相似文献   

15.
This study presents a novel photothermal drawing of poly(ethylene terephthalate) (PET)/multiwalled carbon nanotube (MWCNT) fibers. The photothermal drawing was carried out using the near infrared laser‐induced photothermal properties of MWCNTs. An uniform fiber surface was obtained from a continuous necking deformation of the undrawn fibers, particularly at a draw ratio of 4 and higher. The breaking stress and modulus of the photothermally drawn PET/MWCNT fibers were significantly enhanced, in comparison to those of hot drawn fibers at the same draw ratio. The enhanced mechanical properties were ascribed to the increased orientation of PET chains and MWCNTs as well as PET crystallinity due to photothermal drawing. In particular, a significantly higher degree of orientation of the MWCNTs along the fiber axis was obtained from photothermal drawing, as shown in polarized Raman spectra measurements. The photothermal drawing in this study has the potential to enhance the mechanical properties of fibers containing MWCNTs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 603–609  相似文献   

16.
Hot‐air drawing method has been applied to poly(ethylene terephthalate) (PET) fibers in order to investigate the effect of strain rate on their microstructure and mechanical properties and produce high‐performance PET fibers. The hot‐air drawing was carried out by blowing hot air controlled at a constant temperature against an as‐spun PET fiber connected to a weight. As the hot air blew against the fibers weighted variously at a flow rate of about 90 ℓ/min, the fibers elongated instantaneously at a strain rate in the range of 2.3–18.7 s−1. The strain rate in the hot‐air drawing increased with increasing drawing temperature and applied tension. When the hot‐air drawing was carried out at a drawing temperature of 220°C under an applied tension of 27.6 MPa, the strain rate was the highest value of 18.7 s−1. A draw ratio, birefringence, crystallite orientation factor, and mechanical properties increased as the strain rate increased. The fiber drawn at the highest stain rate had a birefringence of 0.231, degree of crystallinity of 44%, tensile modulus of 18 GPa, and dynamic storage modulus of 19 GPa at 25°C. The mechanical properties of fiber obtained had almost the same values as those of the zone‐annealed PET fiber reported previously. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1703–1713, 1999  相似文献   

17.
Gel spinning of poly(vinyl alcohol) (PVA) was attempted from the PVA dope prepared from the mixture of dimethyl sulfoxide (DMSO) and water. The DMSO/H2O = 80/20 (w/w) mixture and methanol were found to be the best solvent for the spinning dope and the coagulant, respectively, to give PVA fiber with the highest drawability. PVA fiber with the highest strength and Young's modulus were obtained from the undrawn gel fibers when subjected to hot two-stage drawing under conditions such as to produce maximum drawability. Furthermore, higher draw ratios of PVA fiber were attained at 6 wt % dope by lowering the coagulating temperature of methanol. In the present work, the highest tensile strength (2.8 GPa) and the highest Young's modulus (64 GPa) were realized, when the spinning dope was prepared from PVA with DP of 5,000 and the DMSO/H2O (80/20) mixed solvent to have the PVA concentration of 6 wt %, the coagulating temperature of methanol was ?20°C, and the two-stage drawing was carried out at 160 (first) and 200°C (second). The PVA fiber prepared under this gel spinning condition could be elongated to 45 times draw ratio. The very high drawability of PVA fibers obtained from the DMSO/H2O (80/20) mixture dope was ascribed to the ability of the DMSO/H2O mixture to promote gelation. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Nylon‐6/poly(ethylene terephthalate) (PET) ultra‐multi‐island sea–island conjugated melt‐spun fibers are flow‐drawn at a draw ratio of 174 with heating by CO2 laser irradiation. Continuous PET nanofibers that have a diameter of 39 nm could be obtained from the flow‐drawn fiber with further drawing and removal of the sea component. In addition, the drawn fiber has a strength of 0.54 GPa. This result shows that a PET nanofiber having a strength almost equal to that of a conventional PET fiber can be obtained by the combination of conjugate‐melt‐spinning and laser‐heated flow‐drawing.

  相似文献   


19.
Medicated‐fibers have been obtained through electrospinning after rifampin was dissolved in poly (lactic acid)/chloroform solution. The relationship between polymer variables [such as concentration, molecular weight (Mw), and introducing hydrophilic block] and drug release from the electrospun fibers is disclosed. The results show that polymeric concentration and Mw are crucial for producing the medicated fibers, which influence not only the morphology of the medicated‐fiber but also drug release rate from fiber. At the same Mw, the drug release rate decreases with the increase of spinning concentration. At two different Mw blends, drug release behaviors change. When the low Mw content is in a dominant position, drug release rate depends largely on mixing ratio of two Mw contents; on the other hand, drug release rate is also dependent on concentration of spinning fluid. In addition, the block copolymer [poly‐L ‐lactic acid (PLLA)‐polyethylene glycol‐PLLA] shows faster release rate as compared to homopolymer (PLLA). © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

20.
A silk‐like extensible poly(α,L ‐amino acid) fiber is created by self‐assembly of poly(α,L ‐lysine) and poly(α,L ‐glutamic acid) at their aqueous solutions' interface. Distinguishing features of the PLL/PLG fiber are the high extensibility and good stretch. Stretching after spinning changes this fiber to a rigid and strong one. The concept and the poly(α,L ‐amino acid) fibers themselves open doors for the production of new protein fibers which are more silk‐ and wool‐like.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号