首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
We propose a local postprocessing method to get a new finite element solution whose flux is conservative element‐wise. First, we use the so‐called polynomial preserving recovery (postprocessing) technique to obtain a higher order flux which is continuous across the element boundary. Then, we use special bubble functions, which have a nonzero flux only on one face‐edge or face‐triangle of each element, to correct the finite element solution element by element, guided by the above super‐convergent flux and the element mass. The new finite element solution preserves mass element‐wise and retains the quasioptimality in approximation. The method produces a conservative flux, of high‐order accuracy, satisfying the constitutive law. Numerical tests in 2D and 3D are presented.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1859–1883, 2017  相似文献   

2.
We propose a new nonlinear positivity‐preserving finite volume scheme for anisotropic diffusion problems on general polyhedral meshes with possibly nonplanar faces. The scheme is a vertex‐centered one where the edge‐centered, face‐centered, and cell‐centered unknowns are treated as auxiliary ones that can be computed by simple second‐order and positivity‐preserving interpolation algorithms. Different from most existing positivity‐preserving schemes, the presented scheme is based on a special nonlinear two‐point flux approximation that has a fixed stencil and does not require the convex decomposition of the co‐normal. More interesting is that the flux discretization is actually performed on a fixed tetrahedral subcell of the primary cell, which makes the scheme very easy to be implemented on polyhedral meshes with star‐shaped cells. Moreover, it is suitable for polyhedral meshes with nonplanar faces, and it does not suffer the so‐called numerical heat‐barrier issue. The truncation error is analyzed rigorously, while the Picard method and its Anderson acceleration are used for the solution of the resulting nonlinear system. Numerical experiments are also provided to demonstrate the second‐order accuracy and well positivity of the numerical solution for heterogeneous and anisotropic diffusion problems on severely distorted grids.  相似文献   

3.
We propose a new finite volume scheme for 2D anisotropic diffusion problems on general unstructured meshes. The main feature lies in the introduction of two auxiliary unknowns on each cell edge, and then the scheme has both cell‐centered primary unknowns and cell edge‐based auxiliary unknowns. The auxiliary unknowns are interpolated by the multipoint flux approximation technique, which reduces the scheme to a completely cell‐centered one. The derivation of the scheme satisfies the linearity‐preserving criterion that requires that a discretization scheme should be exact on linear solutions. The resulting new scheme is then called as a cell edge‐based linearity‐preserving scheme. The optimal convergence rates are numerically obtained on unstructured grids in case that the diffusion tensor is taken to be anisotropic and/or discontinuous. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, we investigate the concept of the complete flux (CF) obtained as a solution to a local boundary value problem (BVP) for a given parabolic singularly perturbed differential‐difference equation (SPDDE) with modified source term to propose an efficient complete flux‐finite volume method (CF‐FVM) for parabolic SPDDE which is μ‐ and ?‐uniform method where μ, ? are shift and perturbation parameters, respectively. The proposed numerical method is shown to be consistent, stable, and convergent and has been successfully implemented on three test problems.  相似文献   

5.
We consider the Navier–Stokes equations in an aperture domain of the three‐dimensional Euclidean space. We are interested in proving the existence of regular solutions corresponding to small initial data and flux through the aperture. The flux is assumed to be smooth and bounded on (0, +∞). As a consequence, we prove the existence of a time‐periodic solution corresponding to a time‐periodic flux through the aperture. Finally, we compare our solution with a solution belonging to a wider class, showing that, if such a solution does exist, then the two solutions coincide. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
A classic strategy to obtain high‐quality discretizations of hyperbolic partial differential equations is to use flux limiter (FL) functions for blending two types of approximations: a monotone first‐order scheme that deals with discontinuous solution features and a higher order method for approximating smooth solution parts. In this article, we study a new approach to FL methods. Relying on a classification of input data with respect to smoothness, we associate specific basis functions with the individual smoothness notions. Then, we construct a limiter as a linear combination of the members of parameter‐dependent families of basis functions, and we explore the possibility to optimize the parameters in interesting model situations to find a corresponding optimal limiter. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

7.
This paper discusses the properties of the rotational invariance and hyperbolicity in time of the governing equations of the ideal special relativistic hydrodynamics and proves for the first time that the ideal relativistic hydrodynamical equations satisfy the homogeneity property, which is the footstone of the Steger–Warming flux vector splitting method [J. L. Steger and R. F. Warming, J. Comput. Phys., 40(1981), 263–293]. On the basis of this remarkable property, the Steger–Warming flux vector splitting (SW‐FVS) is given. Two high‐resolution SW‐FVS schemes are also given on the basis of the initial reconstructions of the solutions and the fluxes, respectively. Several numerical experiments are conducted to validate the performance of the SW‐FVS method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The catastrophe of coronal magnetic flux ropes is closely related to solar explosive phenomena, such as prominence eruptions, coronal mass ejections, and two-ribbon solar flares. Using a 2-dimensional, 3-component ideal MHD model in Cartesian coordinates, numerical simulations are carried out to investigate the equilibrium property of a coronal magnetic flux rope which is embedded in a fully open background magnetic field. The flux rope emerges from the photosphere and enters the corona with its axial and annular magnetic fluxes controlled by a single "emergence parameter". For a flux rope that has entered the corona, we may change its axial and annular fluxes artificially and let the whole system reach a new equilibrium through numerical simulations. The results obtained show that when the emergence parameter, the axial flux, or the annular flux is smaller than a certain critical value, the flux rope is in equilibrium and adheres to the photosphere. On the other hand, if the critical value is exceeded, the flux rope loses equilibrium and erupts freely upward, namely, a catastrophe takes place. In contrast with the partly-opened background field, the catastrophic amplitude is infinite for the case of fully-opened background field.  相似文献   

9.
Heat transfer plays a major role in the processing of many particulate materials. The heat flux vector is commonly modelled by the Fourier's law of heat conduction and for complex materials such as non‐linear fluids, porous media, or granular materials, the coefficient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematical parameters such as temperature, shear rate, porosity or concentration, etc. In Part I, we will give a brief review of the basic equations of thermodynamics and heat transfer to indicate the importance of the modelling of the heat flux vector. We will also discuss the concept of effective thermal conductivity (ETC) in granular and porous media. In Part II, we propose and subsequently derive a properly frame‐invariant constitutive relationship for the heat flux vector for a (single phase) flowing granular medium. Standard methods in continuum mechanics such as representation theorems and homogenization techniques are used. It is shown that the heat flux vector in addition to being proportional to the temperature gradient (the Fourier's law), could also depend on the gradient of density (or volume fraction), and D (the symmetric part of the velocity gradient) in an appropriate manner. The emphasis in this paper is on the idea that for complex non‐linear materials it is the heat flux vector which should be studied; obtaining or proposing generalized form of the thermal conductivity is not always appropriate or sufficient. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper we first briefly review the very high order ADER methods for solving hyperbolic conservation laws. ADER methods use high order polynomial reconstruction of the solution and upwind fluxes as the building block. They use a first order upwind Godunov and the upwind second order weighted average (WAF) fluxes. As well known the upwind methods are more accurate than central schemes. However, the superior accuracy of the ADER upwind schemes comes at a cost, one must solve exactly or approximately the Riemann problems (RP). Conventional Riemann solvers are usually complex and are not available for many hyperbolic problems of practical interest. In this paper we propose to use two central fluxes, instead of upwind fluxes, as the building block in ADER scheme. These are the monotone first order Lax-Friedrich (LXF) and the third order TVD flux. The resulting schemes are called central ADER schemes. Accuracy of the new schemes is established. Numerical implementations of the new schemes are carried out on the scalar conservation laws with a linear flux, nonlinear convex flux and non-convex flux. The results demonstrate that the proposed scheme, with LXF flux, is comparable to those using first and second order upwind fluxes while the scheme, with third order TVD flux, is superior to those using upwind fluxes. When compared with the state of art ADER schemes, our central ADER schemes are faster, more accurate, Riemann solver free, very simple to implement and need less computer memory. A way to extend these schemes to general systems of nonlinear hyperbolic conservation laws in one and two dimensions is presented.  相似文献   

11.
Heat transfer plays a major role in the processing of many particulate materials. The heat flux vector is commonly modelled by the Fourier's law of heat conduction and for complex materials such as non‐linear fluids, porous media, or granular materials, the coefficient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematical parameters such as temperature, shear rate, porosity or concentration, etc. In Part I, we will give a brief review of the basic equations of thermodynamics and heat transfer to indicate the importance of the modelling of the heat flux vector. We will also discuss the concept of effective thermal conductivity (ETC) in granular and porous media. In Part II, we propose and subsequently derive a properly frame‐invariant constitutive relationship for the heat flux vector for a (single phase) flowing granular medium. Standard methods in continuum mechanics such as representation theorems and homogenization techniques are used. It is shown that the heat flux vector in addition to being proportional to the temperature gradient (the Fourier's law), could also depend on the gradient of density (or volume fraction), and D (the symmetric part of the velocity gradient) in an appropriate manner. The emphasis in this paper is on the idea that for complex non‐linear materials it is the heat flux vector which should be studied; obtaining or proposing generalized form of the thermal conductivity is not always appropriate or sufficient. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Two numerical methods for a one‐dimensional haptotaxis model, which exploit the use of van Leer flux limiter, are developed and analyzed. Sufficient conditions time step size and flux limiting are given for such formulation to ensure the non‐negativity of the discrete solution and second‐order accuracy in space. Another advantage is that we avoid solving large nonlinear systems of algebraic equations. The discrete preservation of total conservation of cell density, concentration, and logarithmic density is also verified for the numerical solution. Numerical results concerning accuracy, convergence rate, positivity, and conservation properties are presented and discussed. Similar approach could be applied efficiently in the corresponding two‐ and three‐dimensional problems. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

13.
This article presents a convergence analysis of the multipoint flux approximation control volume method, MPFA, in two space dimensions. The MPFA version discussed here is the so‐called O‐method on general quadrilateral grids. The discretization is based on local mappings onto a reference square. The key ingredient in the analysis is an equivalence between the MPFA method and a mixed finite element method, using a specific numerical quadrature, such that the analysis of the MPFA method can be done in a finite element setting. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

14.
In this paper, a modified semidiscrete central-upwind scheme is derived for the scalar conservation laws with a discontinuous flux function in space. The new scheme is based on dealing with the phase transition at the stationary discontinuity, where the unknown variable function is not continuous, but the flux function is continuous. The main advantages of the new scheme are the same as them of the original semidiscrete central-upwind scheme. Numerical results are displayed to illustrate the efficiency of the methods.  相似文献   

15.
研究了如何利用迎风格式的耗散性构造中心差分TVD格式的方法,给 相应的定理,构造出新的耗散表达式。新格式既保留了二阶中心差分格式灵活方便的优点,又吸收了迎风格式耗散项比较精细的特点,同时具有TVD性质,使得新格式具有较同的激波分辨率。  相似文献   

16.
In this paper, we study the heat transfer in a one‐dimensional fully developed flow of granular materials down a heated inclined plane. For the heat flux vector, we use a recently derived constitutive equation that reflects the dependence of the heat flux vector on the temperature gradient, the density gradient, and the velocity gradient in an appropriate frame invariant formulation. We use two different boundary conditions at the inclined surface: a constant temperature boundary condition and an adiabatic condition. A parametric study is performed to examine the effects of the material dimensionless parameters. The derived governing equations are coupled nonlinear second‐order ordinary differential equations, which are solved numerically, and the results are shown for the temperature, volume fraction, and velocity profiles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Burger, Karlsen, Torres and Towers in [9] proposed a flux TVD (FTVD) second order scheme with Engquist–Osher flux, by using a new nonlocal limiter algorithm for scalar conservation laws with discontinuous flux modeling clarifier thickener units. In this work we show that their idea can be used to construct FTVD second order scheme for general fluxes like Godunov, Engquist–Osher, Lax–Friedrich, … satisfying (A, B)-interface entropy condition for a scalar conservation law with discontinuous flux with proper modification at the interface. Also corresponding convergence analysis is shown. We show further from numerical experiments that solutions obtained from these schemes are comparable with the second order schemes obtained from the minimod limiter.  相似文献   

18.
This letter presents a research for coupled flow and heat transfer of an upper-convected Maxwell fluid above a stretching plate with velocity slip boundary. Unlike most classical works, the new heat flux model, which is recently proposed by Christov, is employed. Analytical solutions are obtained by using the homotopy analysis method (HAM). The effects of elasticity number, slip coefficient, the relaxation time of the heat flux and the Prandtl number on velocity and temperature fields are analyzed. A comparison of Fourier’s Law and the Cattaneo–Christov heat flux model is also presented.  相似文献   

19.
周叔子  李辉 《应用数学》2008,21(1):49-51
本文对[1]中关于一类HJ方程的Godunov通量的命题作出改进,并给出新的证明.  相似文献   

20.
We consider a fully hyperbolic phase‐field model in this paper. Our model consists of a damped hyperbolic equation of second order with respect to the phase function χ(t) , which is coupled with a hyperbolic system of first order with respect to the relative temperature θ(t) and the heat flux vector q (t). We prove the well‐posedness of this system subject to homogeneous Neumann boundary condition and no‐heat flux boundary condition. Then, we show that this dynamical system is a dissipative one. Finally, using the celebrated ?ojasiewicz–Simon inequality and by constructing an auxiliary functional, we prove that the solution of this problem converges to an equilibrium as time goes to infinity. We also obtain an estimate of the decay rate to equilibrium. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号