共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Hayat Y. Wang A. M. Siddiqui S. Asghar 《Mathematical Methods in the Applied Sciences》2004,27(12):1447-1468
This paper is concerned with a mathematical hydrodynamical model of motility involving an undulating cell surface. The cell surface transmits stresses through a layer of exuded slime to the substratum. The slime is considered as a Johnson–Segalman fluid. A perturbation approach is used to find the analytic solution. Analytical expressions for the stream function, velocity, pressure gradient and pressure rise over a wavelength as well as the corresponding computational results are presented. The propulsive and lift forces and the power required for gliding propulsion have also been determined. The presented mechanism is found to generate a force for the propulsion of glider at a realistic speed and requires an output of power that is much less than the organism's metabolic rate of energy production. It is observed that unlike the Newtonian case of slime, the lift force is generated due to the Weissenberg number for non‐Newtonian slime, represented by the model of Johnson–Segalman fluid. It is also found that power required for translation in Johnson–Segalman fluid is reduced. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
2.
Carsten Ebmeyer 《Mathematical Methods in the Applied Sciences》2006,29(14):1687-1707
The system is considered on a bounded three‐dimensional domain under no‐stick boundary value conditions, where S has p‐structure for some p<2 and D ( u ) is the symmetrized gradient of u . Various regularity results for the velocity u and the pressure π in fractional order Sobolev and Nikolskii spaces are obtained. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
3.
Miroslav Bulíček Frank Ettwein Petr Kaplický Dalibor Pražák 《Mathematical Methods in the Applied Sciences》2010,33(16):1995-2010
Large class of non‐Newtonian fluids can be characterized by index p, which gives the growth of the constitutively determined part of the Cauchy stress tensor. In this paper, the uniqueness and the time regularity of flows of these fluids in an open bounded three‐dimensional domain is established for subcritical ps, i.e. for p>11/5. Our method works for ‘all’ physically relevant boundary conditions, the Cauchy stress need not be potential and it may depend explicitly on spatial and time variable. As a simple consequence of time regularity, pressure can be introduced as an integrable function even for Dirichlet boundary conditions. Moreover, these results allow us to define a dynamical system corresponding to the problem and to establish the existence of an exponential attractor. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
4.
In this paper we study the flow and heat transfer in a chemically reacting non‐linear fluid between two long horizontal parallel flat plates that are at different temperatures. The top plate is sheared, whereas the bottom plate is fixed. The fluid is modeled as a generalized power‐law fluid whose viscosity is also assumed to be a function of the concentration. The effects of radiation are neglected. The equations are made dimensionless and the boundary value problem is solved numerically; the velocity and temperature profiles are obtained for various dimensionless numbers. Published in 2009 by John Wiley & Sons, Ltd. 相似文献
5.
Mauricio Giraldo Henry Power Whady F. Flrez 《Numerical Methods for Partial Differential Equations》2011,27(6):1610-1627
An efficient indirect boundary integral formulation for the evaluation of inelastic non‐Newtonian shear‐thinning flows at low Reynolds number is presented in this article. The formulation is based on the solution of a homogeneous Stokes flow field and the use of a particular solution for the nonlinear non‐Newtonian terms that yields the complete solution to the problem. Matrix multiplications are reduced in comparison to other means of handling nonlinear terms in boundary integral formulations such as the dual reciprocity method. The iterative solution of the nonlinear system of equations has been performed with a modified Newton‐Raphson method obtaining accurate results for values of the power law index as low as 0.4 without domain partitioning. Geometries such as Couette flow and a typical industrial polymer mixer have been analyzed with the proposed method obtaining good results with a reduction in computational cost compared with other equivalent formulations. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27:1610–1627, 2011 相似文献
6.
7.
We consider the bidimensional stationary Stefan problem with convection. The problem is governed by a coupled system involving a non‐linear Darcy's law and the energy balance equation with second member in L1. We prove existence of at least one weak solution of the problem, using the penalty method and the Schauder fixed point principle. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
8.
Dorothee Knees 《Mathematical Methods in the Applied Sciences》2006,29(12):1363-1391
In this paper, we study the global regularity of the displacement and stress fields of a nonlinear elastic model of power‐law type. It is assumed that the underlying domains are Lipschitz domains which satisfy an additional geometric condition near those points, where the type of the boundary conditions changes. The proof of the global regularity result relies on a difference quotient technique. Finally, a global regularity result for the stress fields of the elastic, perfect plastic Hencky model is derived. This model appears as a limit model of the power‐law model. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
9.
《Mathematical Methods in the Applied Sciences》2018,41(9):3441-3462
This paper is devoted to the existence of global‐in‐time weak solutions to a one‐dimensional full compressible non‐Newtonian fluid. A semi‐discrete finite element scheme is taken to generate approximate solutions, based on an exact projection technique. To enforce convergence of the approximate solutions, the uniform estimate is obtained using an iteration method and energy method, with the help of the weak compactness and convexity. Numerical simulations showing the existence of solutions are presented. 相似文献
10.
E. Bretin L. Guadarrama Bustos A. Wahab 《Mathematical Methods in the Applied Sciences》2011,34(7):819-830
In this work, we present an explicit expression for the Green function in a visco‐elastic medium. We choose Szabo and Wu's frequency power law model to describe the visco‐elastic properties and derive a generalized visco‐elastic wave equation. We express the ideal Green function (without any viscous effect) in terms of the viscous Green function using an attenuation operator. By means of an approximation of the ideal Green function, we address the problem of reconstructing a small anomaly in a visco‐elastic medium from wavefield measurements. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
11.
Web‐spline‐based finite element approximation of some quasi‐newtonian flows: Existence‐uniqueness and error bound 下载免费PDF全文
Sudhakar Chaudhary V. V. K. Srinivas Kumar 《Numerical Methods for Partial Differential Equations》2015,31(1):54-77
This article deals with the web‐spline‐based finite element approximation of quasi‐Newtonian flows. First, we consider the scalar elliptic p‐Laplace problem. Then, we consider quasi‐Newtonian flows where viscosity obeys power law or Carreau law. We prove well‐posedness at the continuous as well as the discrete level. We give some error bounds for the solution of quasi‐Newtonian flow problem based on the web‐spline method. Finally, we provide the numerical results for the p‐Laplace problem. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq31: 54–77, 2015 相似文献
12.
The rotating flow in the presence of a magnetic field is a problem belonging to hydromagnetics and deserves to be more widely studied than it has been to date. In the non‐linear regime the literature is scarce. We develop the governing equations for the unsteady hydromagnetic rotating flow of a fourth‐order fluid past a porous plate. The steady flow is governed by a boundary value problem in which the order of differential equations is more than the number of available boundary conditions. It is shown that by augmenting the boundary conditions based on asymptotic structures at infinity it is possible to obtain numerical solutions of the nonlinear hydromagnetic equations. Effects of uniform suction or blowing past the porous plate, exerted magnetic field and rotation on the flow phenomena, especially on the boundary layer structure near the plate, are numerically analysed and discussed. The flow behaviours of the Newtonian fluid and second‐, third‐ and fourth‐order non‐Newtonian fluids are compared for the special flow problem, respectively. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
13.
Joachim Escher Anca‐Voichita Matioc 《Mathematical Methods in the Applied Sciences》2013,36(11):1388-1398
In this paper, we consider a mathematical model describing the two‐phase interaction between water and mud in a water canal when the width of the canal is small compared with its depth. The mud is treated as a non‐Newtonian fluid, and the interface between the mud and fluid is allowed to move under the influence of gravity and surface tension. We reduce the mathematical formulation, for small boundary and initial data, to a fully nonlocal and nonlinear problem and prove its local well‐posedness by using abstract parabolic theory. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
14.
Huandi Shi Ping Lin Botong Li Liancun Zheng 《Mathematical Methods in the Applied Sciences》2014,37(8):1121-1129
Heat transfer of a power‐law non‐Newtonian incompressible fluid in channels with porous walls has not been carefully studied using a proper numerical method despite a few constructions of approximate analytic solutions through the similarity transformation and perturbation method for Newtonian fluids (i.e. power‐law index being one). In this paper, we propose a finite element method for the thermal incompressible flow equations. The incompressible condition is treated by a penalty formulation. Numerical solutions are validated by comparing them with an approximate analytic solution of the Navier–Stokes equation in the Newtonian fluid case. Then, the method is used to simulate the heat transfer of various power‐law fluids. Additionally, unlike previous studies, we allow the thermal diffusivity to be a function of temperature gradient. The effect of different values of the parameters on the temperature and velocity is also discussed in this paper. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
15.
Martin Hilbert 《Complexity》2014,19(4):56-65
While scale‐free power‐laws are frequently found in social and technological systems, their authenticity, origin, and gained insights are often questioned, and rightfully so. The article presents a newly found rank‐frequency power‐law that aligns the top‐500 supercomputers according to their performance. Pursuing a cautious approach in a systematic way, we check for authenticity, evaluate several potential generative mechanisms, and ask the “so what” question. We evaluate and finally reject the applicability of well‐known potential generative mechanisms such as preferential attachment, self‐organized criticality, optimization, and random observation. Instead, the microdata suggest that an inverse relationship between exponential technological progress and exponential technology diffusion through social networks results in the identified fat‐tail distribution. This newly identified generative mechanism suggests that the supply and demand of technology (“technology push” and “demand pull”) align in exponential synchronicity, providing predictive insights into the evolution of highly uncertain technology markets. © 2013 Wiley Periodicals, Inc. Complexity 19: 56–65, 2014 相似文献
16.
In this paper, a small‐time large deviation principle for the stochastic non‐Newtonian fluids driven by multiplicative noise is proved. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
17.
Caidi Zhao 《Mathematical Methods in the Applied Sciences》2013,36(7):840-856
This paper studies the approximation of the non‐Newtonian fluid equations by the artificial compressibility method. We first introduce a family of perturbed compressible non‐Newtonian fluid equations (depending on a positive parameter ε) that approximates the incompressible equations as ε → 0+. Then, we prove the unique existence and convergence of solutions for the compressible equations to the solutions of the incompressible equations. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
18.
Paula Budu 《Mathematical Methods in the Applied Sciences》2004,27(4):457-475
The thermal convection in a layer of a third grade fluid is investigated, with viscosity being a general function of temperature. We develop a non‐linear stability analysis and prove that unconditional non‐linear stability criterion is achieved using a natural energy approach. This shows that, in some sense, the equations for a fluid of third grade are preferable to those for a fluid of second grade or a dipolar fluid. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
19.
We propose a mixed formulation for quasi‐Newtonian fluid flow obeying the power law where the stress tensor is introduced as a new variable. Based on such a formulation, a mixed finite element is constructed and analyzed. This finite element method possesses local (i.e., at element level) conservation properties (conservation of the momentum and the mass) as in the finite volume methods. We give existence and uniqueness results for the continuous problem and its approximation and we prove error bounds. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004. 相似文献
20.
We study the asymptotic behaviour in time of incompressible non‐Newtonian fluids in the whole space assuming that initial data also belong to L1. Firstly, we consider the weak solution to the power‐law model with non‐zero external forces and we find the asymptotic behaviour in time of this solution in the same class of existence and uniqueness with p?. Secondly, we are interested in the asymptotic behaviour of weak solutions to the second grade model, and finally, we deal with the asymptotic behaviour in time of weak solutions to a simplified model of viscoelastic fluids of the Oldroyd type. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献