首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper we consider the decay and blow-up properties of a viscoelastic wave equation with boundary damping and source terms. We first extend the decay result (for the case of linear damping) obtained by Lu et al. (On a viscoelastic equation with nonlinear boundary damping and source terms: Global existence and decay of the solution, Nonlinear Analysis: Real World Applications 12 (1) (2011), 295-303) to the nonlinear damping case under weaker assumption on the relaxation function g(t). Then, we give an exponential decay result without the relation between g(t) and g(t) for the linear damping case, provided that ‖gL1(0,) is small enough. Finally, we establish two blow-up results: one is for certain solutions with nonpositive initial energy as well as positive initial energy for both the linear and nonlinear damping cases, the other is for certain solutions with arbitrarily positive initial energy for the linear damping case.  相似文献   

2.
In this paper we consider the Elastic membrane equation with memory term and nonlinear boundary damping.Under some appropriate assumptions on the relaxation function h and with certain initial data,the global existence of solutions and a general decay for the energy are established using the multiplier technique.Also,we show that a nonlinear source of polynomial type is able to force solutions to blow up in finite time even in presence of a nonlinear damping.  相似文献   

3.
In this work, we consider a nonlinear coupled wave equations with initial‐boundary value conditions and nonlinear damping and source terms. Under suitable assumptions on the damping terms and source terms and initial data in the stable set, we obtain that the decay estimates of the energy function is exponential or polynomial by using Nakao's method. By using the energy method, we obtain the blow‐up result of solution with some positive or nonpositive initial energy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, we consider coupled nonlinear Klein–Gordon equations with nonlinear damping terms, in a bounded domain. The decay estimates of the solution are established by using Nakao's inequality. We also prove the blow up of the solution in finite time with negative initial energy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper we consider a semilinear Petrovsky equation with damping and source terms. It is proved that the solution blows up in finite time if the positive initial energy satisfies a suitable condition. Moreover for the linear damping case, we show that the solution blows up in finite time even for vanishing initial energy. This is an important breakthrough, since it is only well known that the solution blows up in finite time if the initial energy is negative from all the previous literature.  相似文献   

6.
In this paper, we study a system of nonlinear coupled wave equations with damping, source, and nonlinear strain terms. We obtain several results concerning local existence, global existence, and finite time blow‐up property with positive initial energy by using Galerkin method and energy method, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper we study the long-time behavior of binary mixture problem of solids, focusing on the interplay between nonlinear damping and source terms. By employing nonlinear semigroups and the theory of monotone operators, we obtain several results on the existence of local and global weak solutions, and uniqueness of weak solutions. Moreover, we prove that every weak solution to our system blows up in finite time, provided the initial energy is negative and the sources are more dominant than the damping in the system. Additional results are obtained via careful analysis involving the Nehari Manifold. Specifically, we prove the existence of a unique global weak solution with initial data coming from the “good” part of the potential well. For such a global solution, we prove that the total energy of the system decays exponentially or algebraically, depending on the behavior of the dissipation in the system near the origin.  相似文献   

8.
In this paper, we consider the wave equation with nonlinear boundary damping and source terms. This work is devoted to prove a finite time blow-up result under suitable condition on the initial data and positive initial energy. The main goal of the present paper is to generalize our previous result in Ha (2012) treating the boundary damping term in a more general setting.  相似文献   

9.
This paper is concerned with global nonexistence of solutions for a logarithmic wave equation with nonlinear damping and distributed delay terms. Due to the simultaneous presence of nonlinear damping and logarithmic source terms, we have difficulty in use of the concavity method. Applying the energy estimates, we show the global nonexistence of solutions with not only non-positive initial energy but also positive initial energy.  相似文献   

10.
We consider the decay rate of energy of the 1D damped original nonlinear wave equation. We first construct a new energy function. Then, employing the perturbed energy method and the generalized Young’s inequality, we prove that, with a general growth assumption on the nonlinear damping force near the origin, the decay rate of energy is governed by a dissipative ordinary differential equation. This allows us to recover the classical exponential, polynomial, or logarithmic decay rate for the linear, polynomial or exponentially degenerating damping force near the origin, respectively. Unlike the linear wave equation, the exponential decay rate constant depends on the initial data, due to the nonlinearity.  相似文献   

11.
In this work, we consider a nonlinear system of viscoelastic equations of Kirchhoff type with degenerate damping and source terms in a bounded domain. Under suitable assumptions on the initial data, the relaxation functions gi(i = 1,2) and degenerate damping terms, we obtain global existence of solutions. Then, we prove the general decay result. Finally, we prove the finite time blow‐up result of solutions with negative initial energy. This work generalizes and improves earlier results in the literature.  相似文献   

12.
We investigate a initial‐boundary value problem for the nonlinear beam equation with variable coefficients on the action of a linear internal damping. We show the existence of a unique global weak solution and that the energy associated with this solution has a rate decay estimate. Besides, we prove the existence and uniqueness of non‐local strong solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
For the Cauchy problem for the nonlinear wave equation with nonlinear damping and source terms we define stable and unstable sets for the initial data. We prove that, if during the evolution the solution enters into the stable set, the solution is global and we are able to estimate the decay rate of the energy. If during the evolution the solution enters into the unstable set, the solution blows up in finite time.  相似文献   

14.
In this paper, we consider a nonlinear wave equation with delay. We show that under suitable conditions on the initial data, the weights of the damping, the delay term and the nonlinear source, the energy of solutions blows up in a finite time.  相似文献   

15.
The major target of this paper is to construct new nonlinear boundary–initial value problems for Boussinesq–Burgers Equations, and derive the solutions of these nonlinear boundary–initial value problems by the simplified homogeneous balance method. The nonlinear transformation and its inversion between the Boussinesq–Burgers Equations and the linear heat conduction equation are firstly derived; then a new nonlinear boundary–initial value problem for the Boussinesq–Burgers equations with variable damping on the half infinite straight line is put forward for the first time, and the solution of this nonlinear boundary–initial value problem is obtained, especially, the decay mode solution of nonlinear boundary–initial value problem for the cylindrical (spherical) Boussinesq–Burgers equations is obtained.  相似文献   

16.
In this paper, we study the initial-boundary value problem for a coupled system of nonlinear viscoelastic wave equations of Kirchhoff type with Balakrishnan–Taylor damping terms. For certain class of relaxation functions and certain initial data, we prove that the decay rate of the solution energy is similar to that of relaxation functions which is not necessarily of exponential or polynomial type. Also, we show that nonlinear source of polynomial type is able to force solutions to blow up in finite time even in presence of stronger damping.  相似文献   

17.
本文利用势井理论讨论一类非线性波动方程的初边值问题 .我们构造其稳定集 W和不稳定集 V,证明了当初值属于 W时 ,对 β∈ R整体弱解存在并且利用乘子法得到当 β>0解的指数衰减估计 ;当初值属于 V时 ,而 β<0时 ,解将爆破  相似文献   

18.
The initial boundary value problem for a system of viscoelastic wave equations of Kirchhoff type with the nonlinear damping and the source terms in a bounded domain is considered. We prove that, under suitable conditions on the nonlinearity of the damping and the source terms and certain initial data in the stable set and for a wider class of relaxation functions, the decay estimates of the energy function is exponential or polynomial depending on the exponents of the damping terms in both equations by using Nakao’s method. Conversely, for certain initial data in the unstable set, we obtain the blow-up of solutions in finite time when the initial energy is nonnegative. This improves earlier results in the literature.  相似文献   

19.
In this article, we use the decay character of initial data to compare the energy decay rates of solutions to different compressible approximations to the Navier- Stokes equations.We show that the system having a nonlinear damping term has slower decay than its counterpart with an advection-like term. Moreover, me characterize a set of initial data for which the decay of the first system is driven by the difference between the full solution and the solution to the linear part, while for the second system the linear part provides the decay rate.  相似文献   

20.
The goal of this work is to study a model of the strongly damped wave equation with dynamic boundary conditions and nonlinear boundary/interior sources and nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. In addition, we show that in the strongly damped case solutions gain additional regularity for positive times t>0. Second, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution grows as an exponential function. Moreover, in the absence of the strong damping term, we prove that the solution ceases to exists and blows up in finite time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号