首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a parallel matrix‐free implicit finite volume scheme for the solution of unsteady three‐dimensional advection‐diffusion‐reaction equations with smooth and Dirac‐Delta source terms. The scheme is formally second order in space and a Newton–Krylov method is employed for the appearing nonlinear systems in the implicit time integration. The matrix‐vector product required is hardcoded without any approximations, obtaining a matrix‐free method that needs little storage and is well‐suited for parallel implementation. We describe the matrix‐free implementation of the method in detail and give numerical evidence of its second‐order convergence in the presence of smooth source terms. For nonsmooth source terms, the convergence order drops to one half. Furthermore, we demonstrate the method's applicability for the long‐time simulation of calcium flow in heart cells and show its parallel scaling. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq31: 143–167, 2015  相似文献   

2.
We revisit the shift‐and‐invert Arnoldi method proposed in [S. Lee, H. Pang, and H. Sun. Shift‐invert Arnoldi approximation to the Toeplitz matrix exponential, SIAM J. Sci. Comput., 32: 774–792, 2010] for numerical approximation to the product of Toeplitz matrix exponential with a vector. In this approach, one has to solve two large‐scale Toeplitz linear systems in advance. However, if the desired accuracy is high, the cost will be prohibitive. Therefore, it is interesting to investigate how to solve the Toeplitz systems inexactly in this method. The contribution of this paper is in three regards. First, we give a new stability analysis on the Gohberg–Semencul formula (GSF) and define the GSF condition number of a Toeplitz matrix. It is shown that when the size of the Toeplitz matrix is large, our result is sharper than the one given in [M. Gutknecht and M. Hochbruck. The stability of inversion formulas for Toeplitz matrices, Linear Algebra Appl., 223/224: 307–324, 1995]. Second, we establish a relation between the error of Toeplitz systems and the residual of Toeplitz matrix exponential. We show that if the GSF condition number of the Toeplitz matrix is medium‐sized, then the Toeplitz systems can be solved in a low accuracy. Third, based on this relationship, we present a practical stopping criterion for relaxing the accuracy of the Toeplitz systems and propose an inexact shift‐and‐invert Arnoldi algorithm for the Toeplitz matrix exponential problem. Numerical experiments illustrate the numerical behavior of the new algorithm and show the effectiveness of our theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
In this article, we consider the problem of robust dissipativity and passivity analysis for a class of general discrete‐time recurrent neural networks (NNs) with time‐varying delays. The NN under consideration is subject to time‐varying and norm bounded parameter uncertainties. By the latest free‐weighting matrix method, an appropriate Lyapunov–Krasovskii functional and using stochastic analysis technique a sufficient condition is established to ensure that the NNs under consideration is strictly ‐dissipative. The derived conditions are presented in terms of linear matrix inequalities. Numerical examples and its simulations are given to demonstrate the effectiveness of the results. © 2014 Wiley Periodicals, Inc. Complexity 21: 47–58, 2016  相似文献   

4.
A direct algorithm is presented for the solution of linear systems having banded Toeplitz coefficient matrix with unbalanced bandwidths. It is derived from the cyclic reduction algorithm, it makes use of techniques based on the displacement rank and it relies on the Morrison–Sherman–Woodbury formula. The algorithm always equals and sometimes outperforms the already known direct ones in terms of asymptotic computational cost. The case where the coefficient matrix is a block banded block Toeplitz matrix in block Hessenberg form is analyzed as well. The algorithm is numerically stable if applied to M‐matrices that are point diagonally dominant by columns. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
This paper focuses on efficiently solving large sparse symmetric indefinite systems of linear equations in saddle‐point form using a fill‐reducing ordering technique with a direct solver. Row and column permutations partition the saddle‐point matrix into a block structure constituting a priori pivots of order 1 and 2. The partitioned matrix is compressed by treating each nonzero block as a single entry, and a fill‐reducing ordering is applied to the corresponding compressed graph. It is shown that, provided the saddle‐point matrix satisfies certain criteria, a block LDLT factorization can be computed using the resulting pivot sequence without modification. Numerical results for a range of problems from practical applications using a modern sparse direct solver are presented to illustrate the effectiveness of the approach.  相似文献   

6.
In this article, based on sampled‐data approach, a new robust state feedback reliable controller design for a class of Takagi–Sugeno fuzzy systems is presented. Different from the existing fault models for reliable controller, a novel generalized actuator fault model is proposed. In particular, the implemented fault model consists of both linear and nonlinear components. Consequently, by employing input‐delay approach, the sampled‐data system is equivalently transformed into a continuous‐time system with a variable time delay. The main objective is to design a suitable reliable sampled‐data state feedback controller guaranteeing the asymptotic stability of the resulting closed‐loop fuzzy system. For this purpose, using Lyapunov stability theory together with Wirtinger‐based double integral inequality, some new delay‐dependent stabilization conditions in terms of linear matrix inequalities are established to determine the underlying system's stability and to achieve the desired control performance. Finally, to show the advantages and effectiveness of the developed control method, numerical simulations are carried out on two practical models. © 2016 Wiley Periodicals, Inc. Complexity 21: 518–529, 2016  相似文献   

7.
This article is concerned with the robust stability analysis for Markovian jump systems with mode‐dependent time‐varying delays and randomly occurring uncertainties. Sufficient delay‐dependent stability results are derived with the help of stability theory and linear matrix inequality technique using direct delay‐decomposition approach. Here, the delay interval is decomposed into two subintervals using the tuning parameter η such that , and the sufficient stability conditions are derived for each subintervals. Further, the parameter uncertainties are assumed to be occurring in a random manner. Numerical examples are given to validate the derived theoretical results. © 2015 Wiley Periodicals, Inc. Complexity 21: 50–60, 2016  相似文献   

8.
To further study the Hermitian and non‐Hermitian splitting methods for a non‐Hermitian and positive‐definite matrix, we introduce a so‐called lopsided Hermitian and skew‐Hermitian splitting and then establish a class of lopsided Hermitian/skew‐Hermitian (LHSS) methods to solve the non‐Hermitian and positive‐definite systems of linear equations. These methods include a two‐step LHSS iteration and its inexact version, the inexact Hermitian/skew‐Hermitian (ILHSS) iteration, which employs some Krylov subspace methods as its inner process. We theoretically prove that the LHSS method converges to the unique solution of the linear system for a loose restriction on the parameter α. Moreover, the contraction factor of the LHSS iteration is derived. The presented numerical examples illustrate the effectiveness of both LHSS and ILHSS iterations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
We prove that ?‐linear GMRES for solving a class of ?‐linear systems is faster than GMRES applied to the related ?‐linear systems in terms of matrix–vector products. Numerical examples are given to demonstrate the theoretical result. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
This paper is concerned with the exponential stability for the discrete‐time bidirectional associative memory neural networks with time‐varying delays. Based on Lyapunov stability theory, some novel delay‐dependent sufficient conditions are obtained to guarantee the globally exponential stability of the addressed neural networks. In order to obtain less conservative results, an improved Lyapunov–Krasovskii functional is constructed and the reciprocally convex approach and free‐weighting matrix method are employed to give the upper bound of the difference of the Lyapunov–Krasovskii functional. Several numerical examples are provided to illustrate the effectiveness of the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
We present two new ways of preconditioning sequences of nonsymmetric linear systems in the special case where the implementation is matrix free. Both approaches are fully algebraic, they are based on the general updates of incomplete LU decompositions recently introduced in (SIAM J. Sci. Comput. 2007; 29 (5):1918–1941), and they may be directly embedded into nonlinear algebraic solvers. The first of the approaches uses a new model of partial matrix estimation to compute the updates. The second approach exploits separability of function components to apply the updated factorized preconditioner via function evaluations with the discretized operator. Experiments with matrix‐free implementations of test problems show that both new techniques offer useful, robust and black‐box solution strategies. In addition, they show that the new techniques are often more efficient in matrix‐free environment than either recomputing the preconditioner from scratch for every linear system of the sequence or than freezing the preconditioner throughout the whole sequence. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The critical delays of a delay‐differential equation can be computed by solving a nonlinear two‐parameter eigenvalue problem. The solution of this two‐parameter problem can be translated to solving a quadratic eigenvalue problem of squared dimension. We present a structure preserving QR‐type method for solving such quadratic eigenvalue problem that only computes real‐valued critical delays; that is, complex critical delays, which have no physical meaning, are discarded. For large‐scale problems, we propose new correction equations for a Newton‐type or Jacobi–Davidson style method, which also forces real‐valued critical delays. We present three different equations: one real‐valued equation using a direct linear system solver, one complex valued equation using a direct linear system solver, and one Jacobi–Davidson style correction equation that is suitable for an iterative linear system solver. We show numerical examples for large‐scale problems arising from PDEs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Antiplane stress state of a piecewise‐homogeneous elastic body with a semi‐infinite crack along the interface is considered. The longitudinal displacements along one of the crack edges on a finite interval, adjacent to the crack tip, are known. Shear stresses are applied to the body along the crack edges and at infinity. The problem reduces to a Riemann–Hilbert boundary‐value matrix problem with a piecewise‐constant coefficient for a complex potential in the class of symmetric functions. The complex potential is found explicitly using a Gaussian hypergeometric function. The stress state of the body close to the singular points is investigated. The stress intensity factors are determined. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Boundary value methods (BVMs) for ordinary differential equations require the solution of non‐symmetric, large and sparse linear systems. In this paper, these systems are solved by using the generalized minimal residual (GMRES) method. A block‐circulant preconditioner with circulant blocks (BCCB preconditioner) is proposed to speed up the convergence rate of the GMRES method. The BCCB preconditioner is shown to be invertible when the BVM is Ak1,k2‐stable. The spectrum of the preconditioned matrix is clustered and therefore, the preconditioned GMRES method converges fast. Moreover, the operation cost in each iteration of the preconditioned GMRES method by using our BCCB preconditioner is less than that required by using block‐circulant preconditioners proposed earlier. In numerical experiments, we compare the number of iterations of various preconditioners. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
This paper is concerned with the problem of μ‐stability of impulsive differential systems with unbounded time‐varying delays and nonlinear perturbations. Some μ‐stability criteria, which depend on the range of distributed delay and the decay rate of discrete delay (not the range), are derived by using Lyapunov–Krasovski functional method. Those criteria are expressed in the form of linear matrix inequalities and they can easily be checked. Two numerical examples are provided to demonstrate the effectiveness of the obtained results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, the Takagi–Sugeno (T–S) fuzzy model representation is extended to the state estimation of uncertain Markovian jumping Hopfield neural networks with mixed interval time‐varying delays. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time delays, the dynamics of the estimation error are globally asmptotically stable in the mean square. Based on the Lyapunov–Krasovskii functional and stochastic analysis approach, several delay‐dependent robust state estimators for such T–S fuzzy Markovian jumping Hopfield neural networks can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated by using some standard numerical packages. Finally a numerical example is provided to demonstrate the effectiveness of the proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, multi‐switching combination–combination synchronization scheme has been investigated between a class of four non‐identical fractional‐order chaotic systems. The fractional‐order Lorenz and Chen's systems are taken as drive systems. The combination–combination of multi drive systems is then synchronized with the combination of fractional‐order Lü and Rössler chaotic systems. In multi‐switching combination–combination synchronization, the state variables of two drive systems synchronize with different state variables of two response systems simultaneously. Based on the stability of fractional‐order chaotic systems, the multi‐switching combination–combination synchronization of four fractional‐order non‐identical systems has been investigated. For the synchronization of four non‐identical fractional‐order chaotic systems, suitable controllers have been designed. Theoretical analysis and numerical results are presented to demonstrate the validity and feasibility of the applied method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
This paper deals with the problem of recovering an unknown low‐rank matrix from a sampling of its entries. For its solution, we consider a nonconvex approach based on the minimization of a nonconvex functional that is the sum of a convex fidelity term and a nonconvex, nonsmooth relaxation of the rank function. We show that by a suitable choice of this nonconvex penalty, it is possible, under mild assumptions, to use also in this matrix setting the iterative forward–backward splitting method. Specifically, we propose the use of certain parameter dependent nonconvex penalties that with a good choice of the parameter value allow us to solve in the backward step a convex minimization problem, and we exploit this result to prove the convergence of the iterative forward–backward splitting algorithm. Based on the theoretical results, we develop for the solution of the matrix completion problem the efficient iterative improved matrix completion forward–backward algorithm, which exhibits lower computing times and improved recovery performance when compared with the best state‐of‐the‐art algorithms for matrix completion. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The pseudo‐spectral Legendre–Galerkin method (PS‐LGM) is applied to solve a nonlinear partial integro‐differential equation arising in population dynamics. This equation is a competition model in which similar individuals are competing for the same resources. It is a kind of reaction–diffusion equation with integral term corresponding to nonlocal consumption of resources. The proposed method is based on the Legendre–Galerkin formulation for the linear terms and interpolation operator at the Chebyshev–Gauss–Lobatto (CGL) points for the nonlinear terms. Also, the integral term, which is a kind of convolution, is directly computed by a fast and accurate method based on CGL interpolation operator, and thus, the use of any quadrature formula in its computation is avoided. The main difference of the PS‐LGM presented in the current paper with the classic LGM is in treating the nonlinear terms and imposing boundary conditions. Indeed, in the PS‐LGM, the nonlinear terms are efficiently handled using the CGL points, and also the boundary conditions are imposed strongly as collocation methods. Combination of the PS‐LGM with a semi‐implicit time integration method such as second‐order backward differentiation formula and Adams‐Bashforth method leads to reducing the complexity of computations and obtaining a linear algebraic system of equations with banded coefficient matrix. The desired equation is considered on one and two‐dimensional spatial domains. Efficiency, accuracy, and convergence of the proposed method are demonstrated numerically in both cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Comparing with the classical local gradient flow and phase field models, the nonlocal models such as nonlocal Cahn–Hilliard equations equipped with nonlocal diffusion operator can describe more practical phenomena for modeling phase transitions. In this paper, we construct an accurate and efficient scalar auxiliary variable approach for the nonlocal Cahn–Hilliard equation with general nonlinear potential. The first contribution is that we have proved the unconditional energy stability for nonlocal Cahn–Hilliard model and its semi‐discrete schemes carefully and rigorously. Second, what we need to focus on is that the nonlocality of the nonlocal diffusion term will lead the stiffness matrix to be almost full matrix which generates huge computational work and memory requirement. For spatial discretizaion by finite difference method, we find that the discretizaition for nonlocal operator will lead to a block‐Toeplitz–Toeplitz‐block matrix by applying four transformation operators. Based on this special structure, we present a fast procedure to reduce the computational work and memory requirement. Finally, several numerical simulations are demonstrated to verify the accuracy and efficiency of our proposed schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号