共查询到20条相似文献,搜索用时 0 毫秒
1.
Seungcheol Yang Jeong Hwan Kim Jung Ho Jin Byeong‐Soo Bae 《Journal of Polymer Science.Polymer Physics》2009,47(8):756-763
Nano‐sized epoxy oligosiloxanes (EO) were prepared by condensation reaction between 3‐glycidoxypropyltrimethoxysilane (GPTS) and Diphenylsilandiol (DPSD). Through a composition change of GPTS and DPSD, EO of various structure and sizes were obtained. The molecular structure and size of EO synthesized were investigated by experimental measurements. Regardless of their composition, molecular structure of EO was linear or branch. The amount of species of high molecular weight and their molecular size increased with addition of DPSD. We confirmed that epoxy groups of EO were thermally cured using a thermal initiator and curing agent. Finally, we fabricated transparent epoxy‐based hybrimer films by thermal curing of EO resins. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 756–763, 2009 相似文献
2.
Joelma M. de Souza Dr. Paulo T. C. Freire Prof. Dr. Dimitri N. Argyriou Dr. John A. Stride Prof. Dr. Mariette Barthès Dr. Walter Kalceff Dr. Heloisa N. Bordallo Dr. 《Chemphyschem》2009,10(18):3337-3343
Raman and neutron experiments using specific isotope labeling were combined in order to study the dynamics and structure of L ‐alanine. Inelastic neutron and Raman scattering data of C2H4(ND2)CO2D are discussed in relation to the doubling of the lattice parameter a observed by means of neutron powder diffraction in C2D4 (NH2)CO2H. The major changes accompanying the phase transition are found in the vibrational frequencies involving the torsional vibration τ(CO2?), which is clearly affected by the hydrogen bonds between the protons of the ammonium group and the oxygen atoms of the carboxylate group. At lower temperatures the rearrangement of identifiable hydrogen bonds induces changes in the bending vibration δ(ND3), confirming some orientational disorder. 相似文献
3.
Jeong Hwan Kim Ji Hoon Ko Byeong-Soo Bae 《Journal of Sol-Gel Science and Technology》2007,41(3):249-255
Multi-scale hybrid nanocomposites containing both ∼15 nm silica colloids and ∼2 nm oligosiloxanes in a methacryl polymer matrix
were newly designed and fabricated. Colloidal silica sols were dispersed in methacryl oligosiloxanes nano-hybrid resins synthesized
by sol-gel reaction of methacryloxypropylmethoxysilane and diphenylsilanediol. On the basis of TEM and SANS analyses, it was
confirmed that the silica colloids were compatibly dispersed and different sizes of colloidal silica and oligosiloxanes co-exist
in the solutions. Multi-scale hybrid nanocomposites fabricated by UV and thermal curing with incorporation of silica colloids
in the nano-hybrid materials show enhanced mechanical and thermal characteristics. 相似文献
4.
François Gal Henri Perez Vincent Noel Geraldine Carrot 《Journal of polymer science. Part A, Polymer chemistry》2012,50(2):289-296
Functionalized platinum nanoparticles (PtNPs) possess catalytic properties towards H202 oxidation, which are of great interest for the elaboration of electrochemical biosensors. To improve the understanding of phenomena involved in such systems, we designed platinum‐polymer‐enzyme model nanostructures according to a bottom–up approach. These structures have been elaborated from elementary building units based on polymer‐grafted PtNPs obtained from surface initiated‐atom transfer radical polymerization. This paper describes the polymerization of ter‐butyl methacrylate from PtNPs and its subsequent hydrolysis to obtain a water‐soluble corona, followed by an activated ester modification to introduce an enzyme (glucose oxidase). The structure of the objects, the molecular weight and the grafting density of the polymer chains were principally elucidated by small angle neutron scattering (SANS). After the grafting of the enzyme, the final hybrid structures were characterized by both microscopy and SANS to attest for the covalent grafting of the enzyme. Composition and enzyme activity of the nanohybrid objects, have also been determined by UV spectroscopy. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
5.
Irena Brook Guy Mechrez Ran Y. Suckeveriene Roza Tchoudakov Moshe Narkis 《先进技术聚合物》2013,24(8):758-763
Since the discovery of carbon nanotubes (CNTs) and intrinsically conductive polymers, such as polyaniline (PANI) some research has focused on the development of novel hybrid materials by combining CNT and PANI to achieve their complementary properties. Electrically conductive elastomer nano‐composites containing CNT and PANI are described in the present investigation. The synthesis procedure includes in‐situ inverse emulsion polymerization of aniline doped with dodecylbenzene sulfonic acid in the presence of CNT and dissolved styrene‐isoprene‐styrene (SIS) block copolymer, followed by a precipitation–filtration step. The synthesis step is carried out under ultrasonication. The resulting uniform SIS/CNT/PANI dispersions are stable for long time durations. The incorporation of CNT/PANI in the SIS elastomeric matrix improves thermal, mechanical and electrical properties of the nano‐composites. The formation of continuous three‐dimensional CNT/PANI network, assumed to be responsible for enhancement of the resulting nano‐composite properties, is observed by HRSEM. A relatively low percolation threshold of 0.4 wt.% CNT was determined. The Young's modulus of the SIS/CNT/PANI significantly increases in the presence of CNT. High electrical conductivity levels were obtained in the ternary component systems. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
6.
N. Kuanchertchoo S. Kulprathipanja P. Aungkavattana D. Atong K. Hemra T. Rirksomboon S. Wongkasemjit 《应用有机金属化学》2006,20(11):775-783
Nano‐sized Na A zeolite was successfully synthesized via the sol–gel process and microwave techniques. The synthesis parameters, such as hydroxide ion concentration, seed amount, as well as heating time and temperature, were studied to obtain the most uniform and very small sized NaA zeolite using the composition of SiO2:Al2O3:xNa2O:410H2O; 3 ≤ x ≤ 6. It was found that hydroxide ion concentration affects the crystal size and heating time, whereas a higher amount of seed provides smaller sized NaA zeolite. The zeolite product can be synthesized using a higher temperature for a shorter time or lower temperature for a longer time. The best conditions for synthesizing the smallest size, 0.1–0.2 µm, and the most homogeneous NaA zeolite is to use the composition of SiO2:Al2O3:3Na2O:410H2O and 3 wt% crystal seed at 80 °C microwave heating for 6 h. The synthesized NaA zeolite was characterized using XRD and SEM. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
7.
Yan Wang Shujuan Ma Luwei Zhang Na Zhang Yanan Li Junjie Ou Yehua Shen Mingliang Ye 《Journal of separation science》2019,42(7):1332-1340
Three monomers, octakis (3‐mercaptopropyl) octasilsesquioxane, 1,2,4‐trivinylcyclohexane and isophytol were employed to synthesize a novel monolithic stationary phase via photo‐initiated thiol‐ene click polymerization for reversed‐phase liquid chromatography. Several factors such as porogenic system, reaction time and the molar ratio of functional groups were investigated in detail. The resulting poly(POSS‐co‐TVCH‐co‐isophytol) monolithic column exhibited suitable permeability for fast separation and outstanding thermal stability. Five alkylbenzenes were employed to evaluate the ability of chromatographic separation of the resulting monolithic columns at different flow rates, and showed the highest column efficiencies of 90,200–93,100 N/m (corresponding to 10.4–10.6 μm of plate height) at a velocity of 0.41 mm/s. The baseline separations of five anilines and eight phenols further proved the applicability of poly(POSS‐co‐TVCH‐co‐isophytol) monolithic column in the separation of small molecules. 相似文献
8.
H.‐P. Brack D. Fischer G. Peter M. Slaski G. G. Scherer 《Journal of polymer science. Part A, Polymer chemistry》2004,42(1):59-75
The crosslinking of functionalized polystyrene resins is often of critical importance in determining resin properties and performance in the application of these materials as membranes and supports. In this investigation model systems are developed for quantifying the infrared and Raman spectroscopic properties of copolymers based on poly(styrene‐co‐divinylbenzene). Analytical curves appropriate for the quantification of para‐ and metasubstituted species and pendant double bonds are reported, and corrections to previously reported spectroscopic assignments and analytical methods are made. The usefulness of these two analytical methods in characterizing radiation‐grafted films and commercial copolymers is compared, and typical characterization results are given. The relative concentrations of the species found in the grafted films are quite different from their concentrations in the grafting solution, and empirical relationships between the two are developed. In addition, the graft composition varies as a function of the base polymer film thickness and type and the penetration depth in the grafted film. Radiation‐grafted films are more highly crosslinked in their near surface regions, and thinner films are more extensively crosslinked. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 59–75, 2004 相似文献
9.
Naofumi Naga Hitomi Nagino Hidemitsu Furukawa 《Journal of polymer science. Part A, Polymer chemistry》2016,54(14):2229-2238
Organic–inorganic hybrid gels have been synthesized from a multi‐vinyl functional cyclic siloxane, 1,3,5,7‐tetravinyltetramethylcyclotetrasiloxane (TVMCTS), or a cubic silsesquioxane, octavinyloctasilasesquioxane (PVOSS), and α,ω‐dithiol compounds, 1,6‐hexanedithiol (HDT), 1,10‐decanedithiol (DDT), using thiol‐ene reaction in toluene. The network structure of the resulting gels, mesh size and mesh size distribution, was quantitatively characterized by means of a scanning microscopic light scattering (SMILS). The gels obtained from TVMCTS‐HDT formed homogeneous network structure with 1.5–1.6 nm mesh. Relaxation peaks derived from large clusters and/or micro gels were detected in the SMILS analysis of the TVMCTS‐DDT, PVOSS‐HDT, and PVOSS‐DDT gels besides those from the small meshes. The organic–inorganic hybrid gels were also synthesized from TVMCTS, PVOSS with α,ω‐diazide compounds, 1,6‐hexanediazide (HDA), 1,10‐decanediazide (DDA), using azide‐alkene reaction in toluene. All the gels obtained with the azide‐alkene reaction formed the homogeneous network structure. Enthalpy relaxation at the glass transition of the dried samples was detected by differential scanning calorimetry to study the network uniformity of the original gels. The gels synthesized by the azide‐alkene reaction showed larger enthalpy than the gels synthesized by the thiol‐ene reaction, indicating homogeneous network structure in the former gels. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2229–2238 相似文献
10.
《Angewandte Chemie (International ed. in English)》2017,56(16):4392-4430
Raman spectroscopy is an emerging technique in bioanalysis and imaging of biomaterials owing to its unique capability of generating spectroscopic fingerprints. Imaging cells and tissues by Raman microspectroscopy represents a nondestructive and label‐free approach. All components of cells or tissues contribute to the Raman signals, giving rise to complex spectral signatures. Resonance Raman scattering and surface‐enhanced Raman scattering can be used to enhance the signals and reduce the spectral complexity. Raman‐active labels can be introduced to increase specificity and multimodality. In addition, nonlinear coherent Raman scattering methods offer higher sensitivities, which enable the rapid imaging of larger sampling areas. Finally, fiber‐based imaging techniques pave the way towards in vivo applications of Raman spectroscopy. This Review summarizes the basic principles behind medical Raman imaging and its progress since 2012. 相似文献
11.
The azo dye ligand 4‐(5‐chloro‐2‐hydroxyphenylazo)‐N‐thiazol‐2‐ylbenzenesulfonamide (H2L) formed by the coupling reaction of sulfathiazole and p‐chlorophenol was synthesized and characterized using elemental analysis and Fourier transform infrared (FT‐IR) as well as UV–visible spectra. Nano‐sized divalent Cu, Co, Ni, Mn and Zn complexes of the synthesized azo dye ligand were prepared and investigated using various spectroscopic and analytical techniques. Elemental and thermal analyses indicated the formation of the Cu(II), Ni(II) and Mn(II) complexes in a molar ratio of 1:2 (L:M) while Co(II) and Zn(II) complexes exhibited a 1:1 (M:L) ratio. FT‐IR spectral studies confirmed the coordination of the ligand to the metal ions through the phenolic hydroxyl oxygen, azo nitrogen, sulfonamide oxygen and/or thiazole nitrogen. The geometric arrangements around the central metal ions were investigated applying UV–visible and electron spin resonance spectra, thermogravimetric analysis and molar conductance measurements. X‐ray diffraction patterns revealed crystalline nature of H2L and amorphous nature of all synthesized complexes. Transmission electron microscopy images confirmed nano‐sized particles and their homogeneous distribution over the complex surface. Antibacterial, antifungal and antitumour activities of the investigated complexes were screened compared with familiar standard drugs to confirm their potential therapeutic applications. The Cu(II) complex showed IC50 of 3.47 μg ml?1 (5.53 μM) against hepatocellular carcinoma cells, which means that it is a more potent anticancer drug compared with the standard cisplatin (IC50 = 3.67 μg ml?1 (12.23 μM)). Furthermore, the Co(II), Ni(II), Cu(II) and Zn(II) complexes displayed IC50 greater than that of an applied standard anticancer agent (5‐flurouracil) towards breast carcinoma cells. Hence, these complexes can be considered as promising anticancer drugs. The mode of binding of the complexes with salmon serum DNA was determined through electronic absorption titration and viscosity studies. 相似文献
12.
The structural evolution of the Co3O4 fine powders prepared by rheological phase reaction and pyrolysis method upon different temperature has been investigated using X‐ray diffraction (XRD) topography. The electrochemical performance of Co3O4 electrode materials for Li‐ion batteries is studied in the form of Li/Co3O4 cells. The reversible capacity as high as 930 mAh/g for the Co3O4 sample heat‐treated at 600 °C is achieved and sustained over 30 times charge‐discharge cycles at room temperature. The detailed information concerning the reaction mechanism of Co3O4 active material together with lithium ion is obtained through ex‐situ XRD topography, X‐ray photoelectron spectroscopy (XPS) analysis and cyclic voltammetry (CV) technique. And it is revealed that a “two‐step” reaction is involved in the charge and discharge of the Li/Co3O4 cells, in which Co3O4 active material is reversibly reduced into xCoO(3 ‐ x)CoO and then into metallic Co. 相似文献
13.
In this study, we try to discuss the formation defects found in the application of air‐assisted soft mold UV‐cured nano imprint lithography technology in the manufacture of optical waveguide devices, and find a solution. Meanwhile, we try to utilize the nano‐indentation technology in the material quality detection for optical waveguide devices. The results tell us that there is a corresponding relationship between the indentation hardness and procedure parameters under nano‐meter level depth. For example, the indentation tends to be harder when it is lowly loaded and shallow in depth. Closer it gets to the edge of waveguide's turning, lower the indentation hardness will be. At the same time, different exposal process results in different structural intensity. Therefore, the high structural intensity without forming defects of optical waveguide with less optical loss and better optical transmission. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
14.
《Angewandte Chemie (International ed. in English)》2017,56(32):9322-9325
Multi‐domain proteins play critical roles in fine‐tuning essential processes in cellular signaling and gene regulation. Typically, multiple globular domains that are connected by flexible linkers undergo dynamic rearrangements upon binding to protein, DNA or RNA ligands. RNA binding proteins (RBPs) represent an important class of multi‐domain proteins, which regulate gene expression by recognizing linear or structured RNA sequence motifs. Here, we employ segmental perdeuteration of the three RNA recognition motif (RRM) domains in the RBP TIA‐1 using Sortase A mediated protein ligation. We show that domain‐selective perdeuteration combined with contrast‐matched small‐angle neutron scattering (SANS), SAXS and computational modeling provides valuable information to precisely define relative domain arrangements. The approach is generally applicable to study conformational arrangements of individual domains in multi‐domain proteins and changes induced by ligand binding. 相似文献
15.
Andreas Winter Dr. Christian Friebe Manuela Chiper Dr. Ulrich S. Schubert Prof. Dr. Martin Presselt Benjamin Dietzek Dr. Michael Schmitt Dr. Jürgen Popp Prof. Dr. 《Chemphyschem》2009,10(5):787-798
Leading light : A series of zinc(II) bis‐terpyridine complexes (see picture) is investigated by means of DFT calculations combined with Bader's quantum theory of atoms in molecules. Raman spectroscopy experiments and studies of the electro‐optical properties of the complexes in solution and the solid state are also performed to examine their potential as new emissive materials in light‐emitting devices.
16.
Mingna Xiong Shuxue Zhou Bo You Guangxin Gu Limin Wu 《Journal of Polymer Science.Polymer Physics》2004,42(20):3682-3694
Acrylic resin/titania organic–inorganic hybrid materials were prepared by mixing titania sol produced by the sol–gel process with synthesized thermoplastic acrylic resins. The effects of the amounts of water and acid on hydrolysis and condensation of the sol–gel precursor (titanium n‐butoxide) were characterized by nuclear magnetic resonance, and their corresponding influences on the structure and properties of the hybrid films were investigated by small‐angle X‐ray scattering (SAXS), atomic force microscopy, dynamical mechanical analysis, an Instron testing machine, and ultraviolet–visible spectroscopy. SAXS indicated an open structure and nanoscale size for the titania phase of the hybrids. Higher titania content and a greater amount of water or acid in the sol–gel process resulted in titania domains that were larger size and had a more compact structure. The mechanical and UV‐shielding properties of the organic polymer obviously were improved with titania embedded. As the amount of water or acid in the sol–gel process increased, integrative mechanical properties decreased, with the amount of water having a greater impact than the amount of acid on the structure and optical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3682–3694, 2004 相似文献
17.
Plasmonic Hotspots in Air: An Omnidirectional Three‐Dimensional Platform for Stand‐Off In‐Air SERS Sensing of Airborne Species 下载免费PDF全文
Gia Chuong Phan‐Quang Dr. Hiang Kwee Lee Hao Wen Teng Charlynn Sher Lin Koh Barnabas Qinwei Yim Dr. Eddie Khay Ming Tan Wee Lee Tok Dr. In Yee Phang Prof. Dr. Xing Yi Ling 《Angewandte Chemie (International ed. in English)》2018,57(20):5792-5796
Molecular‐level airborne sensing is critical for early prevention of disasters, diseases, and terrorism. Currently, most 2D surface‐enhanced Raman spectroscopy (SERS) substrates used for air sensing have only one functional surface and exhibit poor SERS‐active depth. “Aerosolized plasmonic colloidosomes” (APCs) are introduced as airborne plasmonic hotspots for direct in‐air SERS measurements. APCs function as a macroscale 3D and omnidirectional plasmonic cloud that receives laser irradiation and emits signals in all directions. Importantly, it brings about an effective plasmonic hotspot in a length scale of approximately 2.3 cm, which affords 100‐fold higher tolerance to laser misalignment along the z‐axis compared with 2D SERS substrates. APCs exhibit an extraordinary omnidirectional property and demonstrate consistent SERS performance that is independent of the laser and analyte introductory pathway. Furthermore, the first in‐air SERS detection is demonstrated in stand‐off conditions at a distance of 200 cm, highlighting the applicability of 3D omnidirectional plasmonic clouds for remote airborne sensing in threatening or inaccessible areas. 相似文献
18.
The synthesis of two formyl 2‐tetrazenes, namely, (E)‐1‐formyl‐1,4,4‐trimethyl‐2‐tetrazene ( 2 ) and (E)‐1,4‐diformyl‐1,4‐dimethyl‐2‐tetrazene ( 3 ), by oxidation of (E)‐1,1,4,4‐tetramethyl‐2‐tetrazene ( 1 ) using potassium permanganate in acetone solution is presented. Compound 3 was also synthesized in an improved yield from the oxidation of 1‐formyl‐1‐methylhydrazine ( 4a ) using potassium permanganate in acetone. Both compounds 2 and 3 were characterized by analytical (elemental analysis, GC‐MS) and spectroscopic methods (1H, 13C, and 15N NMR spectroscopy, and IR and Raman spectroscopy). In addition, the solid‐state structures of the compounds were confirmed by low‐temperature X‐ray analysis. (Compound 2 : triclinic; space group P‐1; a=5.997(1) Å, b=8.714(1) Å, c=13.830(2) Å; α=107.35(1)°, β=90.53(1)°, γ=103.33(1)°; VUC=668.9(2) Å3; Z=4; ρcalc=1.292 cm?3. Compound 3 : monoclinic; space group P21/c; a=5.840(2) Å, b=7.414(3) Å, c=8.061(2) Å; β=100.75(3)°; VUC=342(2) Å3; Z=2; ρcalc=1.396 g cm?3.) The vibrational frequencies of compounds 2 and 3 were calculated using the B3LYP method with a 6‐311+G(d,p) basis set. We also computed the natural bond orbital (NBO) charges using the rMP2/aug‐cc‐pVDZ method and the heats of formation were determined on the basis of their electronic energies. Furthermore, the thermal stabilities of these compounds, as well as their sensitivity towards classical stimuli, were also assessed by differential scanning calorimetry and standard BAM tests, respectively. Lastly, the attempted synthesis of (E)‐1,2,3,4‐tetraformyl‐2‐tetrazene ( 6 ) is also discussed. 相似文献
19.
Silicon Nanocrystals and Silicon‐Polymer Hybrids: Synthesis,Surface Engineering,and Applications 下载免费PDF全文
Dr. Mita Dasog Julian Kehrle Prof. Dr. Bernhard Rieger Prof. Dr. Jonathan G. C. Veinot 《Angewandte Chemie (International ed. in English)》2016,55(7):2322-2339
Silicon nanocrystals (Si‐NCs) are emerging as an attractive class of quantum dots owing to the natural abundance of silicon in the Earth's crust, their low toxicity compared to many Group II–VI and III–V based quantum dots, compatibility with the existing semiconductor industry infrastructure, and their unique optoelectronic properties. Despite these favorable qualities, Si‐NCs have not received the same attention as Group II–VI and III–V quantum dots, because of their lower emission quantum yields, difficulties associated with synthesizing monodisperse particles, and oxidative instability. Recent advancements indicate the surface chemistry of Si‐NCs plays a key role in determining many of their properties. This Review summarizes new reports related to engineering Si‐NC surfaces, synthesis of Si‐NC/polymer hybrids, and their applications in sensing, diodes, catalysis, and batteries. 相似文献
20.
Direct Spectroscopic Evidence of the Mechanism behind the Phase Transition of [2,2]‐Paracyclophane 下载免费PDF全文
Dr. Hilke Wolf Dr. Nina Lock Dr. Stewart F. Parker Prof. Dr. Dietmar Stalke 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(12):4556-4560
[2,2]‐Paracyclophane undergoes phase transitions at 45 and 60 K. Based on simultaneous Raman spectroscopy and inelastic neutron scattering experiments (12–70 K), it was shown that a twisting motion of the ethylene bridge perpendicular to the plane of the aromatic rings drives the phase transition. The low‐temperature (<45 K) and high‐temperature (>60 K) conformers only differ by this twisting motion, which freezes out below 45 K and is thermally averaged above 60 K. Between 45 and 60 K, the system gains energy until the phase transition is complete. 相似文献