首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we propose and study different mixed variational methods in order to approximate the Signorini problem with friction using finite elements. The discretized normal and tangential constraints at the contact interface are expressed by using either continuous piecewise linear or piecewise constant Lagrange multipliers in the saddle?point formulation. A priori error estimates are established and several numerical examples corresponding to the different choices of the discretized normal and tangential constraints are carried out. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

2.
We consider the generalized Forchheimer flows for slightly compressible fluids. Using Muskat's and Ward's general form of Forchheimer equations, we describe the fluid dynamics by a nonlinear degenerate parabolic equation for the density. We study Galerkin finite elements method for the initial boundary value problem. The existence and uniqueness of the approximation are proved. A prior estimates for the solutions in , time derivative in and gradient in , with a∈(0,1) are established. Error estimates for the density variable are derived in several norms for both continuous and discrete time procedures. Numerical experiments using backward Euler scheme confirm the theoretical analysis regarding convergence rates. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Finite element methods are used to solve a coupled system of nonlinear partial differential equations, which models incompressible miscible displacement in porous media. Through a backward finite difference discretization in time, we define a sequentially implicit time-stepping algorithm that uncouples the system at each time-step. The Galerkin method is employed to approximate the pressure, and accurate velocity approximations are calculated via a post-processing technique involving the conservation of mass and Darcy's law. A stabilized finite element ( SUPG ) method is applied to the convection–diffusion equation delivering stable and accurate solutions. Error estimates with quasi-optimal rates of convergence are derived under suitable regularity hypotheses. Numerical results are presented confirming the predicted rates of convergence for the post-processing technique and illustrating the performance of the proposed methodology when applied to miscible displacements with adverse mobility ratios. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 519–548, 1998  相似文献   

4.
In this article, we introduce two least‐squares finite element procedures for parabolic integro‐differential equations arising in the modeling of non‐Fickian flow in porous media. By selecting the least‐squares functional properly the presented procedure can be split into two independent subprocedures, one subprocedure is for the primitive unknown and the other is for the flux. The optimal order convergence analysis is established. Numerical examples are given to show the efficiency of the introduced schemes. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

5.
Miscible displacement in porous media is modeled by a nonlinear coupled system of two partial differential equations. We approximate the pressure equation, which is elliptic, and the concentration equation, which is parabolic but normally convection-dominated, by the mixed methods with dynamic finite-element spaces, i.e., different number of elements and different basis functions are adopted at different time levels; and the approximate concentration is projected onto the next finite-element space in weighted L2-norm for starting a new time step. This allows us to make local grid refinements or unrefinements and basis function improvements. Two fully discrete schemes are presented and analysed. Error estimates show that these methods have optimal convergent rate in some sense. The efficiency and capability of the dynamic finite-element method are commented for accurately solving time-dependent problems with localized phenomena, such as fronts, shocks, and boundary layers.  相似文献   

6.
The incompressible miscible displacement problem in porous media is modeled by a coupled system of two nonlinear partial differential equations, the pressure‐velocity equation and the concentration equation. In this article, we present a mixed finite volume element method for the approximation of pressure‐velocity equation and a discontinuous Galerkin finite volume element method for the concentration equation. A priori error estimates in L(L2) are derived for velocity, pressure, and concentration. Numerical results are presented to substantiate the validity of the theoretical results. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

7.
Asymptotic error expansions in the sense of L -norm for the Raviart-Thomas mixed finite element approximation by the lowest-order rectangular element associated with a class of parabolic integro-differential equations on a rectangular domain are derived, such that the Richardson extrapolation of two different schemes and an interpolation defect correction can be applied to increase the accuracy of the approximations for both the vector field and the scalar field by the aid of an interpolation postprocessing technique, and the key point in deriving them is the establishment of the error estimates for the mixed regularized Green’s functions with memory terms presented in R. Ewing at al., Int. J. Numer. Anal. Model 2 (2005), 301–328. As a result of all these higher order numerical approximations, they can be used to generate a posteriori error estimators for this mixed finite element approximation. This project was supported in part by the Special Funds for Major State Basic Research Project (2007CB8149), the National Natural Science Foundation of China (10471103 and 10771158), the Social Science Foundation of the Ministry of Education of China (Numerical methods for convertible bonds, 06JA630047), the NSERC, Tianjin Natural Science Foundation (07JCYBJC14300), and Tianjin University of Finance and Economics.  相似文献   

8.
A two‐grid stabilized mixed finite element method based on pressure projection stabilization is proposed for the two‐dimensional Darcy‐Forchheimer model. We use the derivative of a smooth function, , to approximate the derivative of in constructing the two‐grid algorithm. The two‐grid method consists of solving a small nonlinear system on the coarse mesh and then solving a linear system on the fine mesh. There are a substantial reduction in computational cost. We prove the existence and uniqueness of solution of the discrete schemes on the coarse grid and the fine grid and obtain error estimates for the two‐grid algorithm. Finally, some numerical experiments are carried out to verify the accuracy and efficiency of the method.  相似文献   

9.
In this paper, we propose and study different mixed variational methods in order to approximate with finite elements the unilateral problems arising in contact mechanics. The discretized unilateral conditions at the candidate contact interface are expressed by using either continuous piecewise linear or piecewise constant Lagrange multipliers in the saddle-point formulation. A priori error estimates are established and several numerical studies corresponding to the different choices of the discretized unilateral conditions are achieved.

  相似文献   


10.
11.
In this paper we give weighted, or localized, pointwise error estimates which are valid for two different mixed finite element methods for a general second-order linear elliptic problem and for general choices of mixed elements for simplicial meshes. These estimates, similar in spirit to those recently proved by Schatz for the basic Galerkin finite element method for elliptic problems, show that the dependence of the pointwise errors in both the scalar and vector variables on the derivative of the solution is mostly local in character or conversely that the global dependence of the pointwise errors is weak. This localization is more pronounced for higher order elements. Our estimates indicate that localization occurs except when the lowest order Brezzi-Douglas-Marini elements are used, and we provide computational examples showing that the error is indeed not localized when these elements are employed.

  相似文献   


12.
An a posteriori error analysis for Boussinesq equations is derived in this article. Then we compare this new estimate with a previous one developed for a regularized version of Boussinesq equations in a previous work. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 214–236, 2000  相似文献   

13.
In this article, we develop and analyze a mixed finite element method for the Stokes equations. Our mixed method is based on the pseudostress‐velocity formulation. The pseudostress is approximated by the Raviart‐Thomas (RT) element of index k ≥ 0 and the velocity by piecewise discontinuous polynomials of degree k. It is shown that this pair of finite elements is stable and yields quasi‐optimal accuracy. The indefinite system of linear equations resulting from the discretization is decoupled by the penalty method. The penalized pseudostress system is solved by the H(div) type of multigrid method and the velocity is then calculated explicitly. Alternative preconditioning approaches that do not involve penalizing the system are also discussed. Finally, numerical experiments are presented. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

14.
A least‐squares mixed finite element (LSMFE) schemes are formulated to solve the 1D regularized long wave (RLW) equations and the convergence is discussed. The L2 error estimates of LSMFE methods for RLW equations under the standard regularity assumption on the finite element partition are given.© 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

15.
Mixed finite element methods are applied to a fourth order reaction diffusion equation with different types of boundary conditions. Some a priori bounds are established with the help of Lyapunov functional. The semidiscrete schemes are derived using C0‐piecewise linear finite elements in spatial direction and error estimates are obtained. The semidiscrete problem is then discretized in the temporal direction using backward Euler method and the wellposedness of the completely discrete scheme is discussed. Finally, a priori error estimates are established. While deriving a priori error estimates, Gronwall's lemma is applied and the constants involved in the error bounds do not depend exponentially on $\frac{1}{\gamma}$, where γ is a parameter appeared in the fourth order derivative. © 2011Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

16.
In this article, we will consider the generalized Forchheimer flows for slightly compressible fluids. Using Muskat's and Ward's general form of Forchheimer equations, we describe the fluid dynamics by a nonlinear degenerate parabolic equation for density. The long‐time numerical approximation of the nonlinear degenerate parabolic equation with time dependent boundary conditions is studied. The stability for all time is established in a continuous time scheme and a discrete backward Euler scheme. A Gronwall's inequality‐type is used to study the asymptotic behavior of the solution. Error estimates for the solution are derived for both continuous and discrete time procedures. Numerical experiments confirm the theoretical analysis regarding convergence rates.  相似文献   

17.
A block‐centered finite difference scheme is introduced to solve the nonlinear Darcy–Forchheimer equation with variable Forchheimer number, in which the velocity and pressure can be approximated simultaneously. For variable Forchheimer number the second‐order error estimates for both pressure and velocity are established on nonuniform rectangular grid. An iteration process is given to solve the nonlinear system. Numerical experiments using the scheme show the consistency of the convergence rates of the presented methods with the theoretical analysis. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1603–1622, 2015  相似文献   

18.
The semidiscrete and fully discrete weak Galerkin finite element schemes for the linear parabolic integro‐differential equations are proposed. Optimal order error estimates are established for the corresponding numerical approximations in both and norms. Numerical experiments illustrating the error behaviors are provided.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1357–1377, 2016  相似文献   

19.
We analyze a combined method consisting of the mixed finite element method for pressure equation and the discontinuous Galerkin method for saturation equation for the coupled system of incompressible two‐phase flow in porous media. The existence and uniqueness of numerical solutions are established under proper conditions by using a constructive approach. Optimal error estimates in L2(H1) for saturation and in L(H(div)) for velocity are derived. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In this article, we analyse a posteriori error estimates of mixed finite element discretizations for linear parabolic equations. The space discretization is done using the order λ?≥?1 Raviart–Thomas mixed finite elements, whereas the time discretization is based on discontinuous Galerkin (DG) methods (r?≥?1). Using the duality argument, we derive a posteriori l (L 2) error estimates for the scalar function, assuming that only the underlying mesh is static.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号