首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigate the evolution problem where H is a Hilbert space, A is a self‐adjoint linear non‐negative operator on H with domain D(A), and is a continuous function. We prove that if , and , then there exists at least one global solution, which is unique if either m never vanishes, or m is locally Lipschitz continuous. Moreover, we prove that if for all , then this problem is well posed in H. On the contrary, if for some it happens that for all , then this problem has no solution if with β small enough. We apply these results to degenerate parabolic PDEs with non‐local non‐linearities. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
An asymmetric covering is a collection of special subsets S of an n‐set such that every subset T of the n‐set is contained in at least one special S with . In this paper we compute the smallest size of any for We also investigate “continuous” and “banded” versions of the problem. The latter involves the classical covering numbers , and we determine the following new values: , , , , and . We also find the number of non‐isomorphic minimal covering designs in several cases. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 218–228, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10022  相似文献   

3.
Let x? be a computed solution to a linear system Ax=b with , where is a proper subclass of matrices in . A structured backward error (SBE) of x? is defined by a measure of the minimal perturbations and such that (1) and that the SBE can be used to distinguish the structured backward stability of the computed solution x?. For simplicity, we may define a partial SBE of x? by a measure of the minimal perturbation such that (2) Can one use the partial SBE to distinguish the structured backward stability of x?? In this note we show that the partial SBE may be much larger than the SBE for certain structured linear systems such as symmetric Toeplitz systems, KKT systems, and dual Vandermonde systems. Besides, certain backward errors for linear least squares are discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Let satisfy and suppose a k‐uniform hypergraph on n vertices satisfies the following property; in any partition of its vertices into k sets of sizes , the number of edges intersecting is (asymptotically) the number one would expect to find in a random k‐uniform hypergraph. Can we then infer that H is quasi‐random? We show that the answer is negative if and only if . This resolves an open problem raised in 1991 by Chung and Graham [J AMS 4 (1991), 151–196]. While hypergraphs satisfying the property corresponding to are not necessarily quasi‐random, we manage to find a characterization of the hypergraphs satisfying this property. Somewhat surprisingly, it turns out that (essentially) there is a unique non quasi‐random hypergraph satisfying this property. The proofs combine probabilistic and algebraic arguments with results from the theory of association schemes. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

5.
We consider the half‐linear boundary value problem where and the weight function q is assumed to change sign. We prove the existence of two sequences , of eigenvalues and derive asymptotic estimates for as .  相似文献   

6.
Suppose r ≥ 2 is a real number. A proper r‐flow of a directed multi‐graph is a mapping such that (i) for every edge , ; (ii) for every vertex , . The circular flow number of a graph G is the least r for which an orientation of G admits a proper r‐flow. The well‐known 5‐flow conjecture is equivalent to the statement that every bridgeless graph has circular flow number at most 5. In this paper, we prove that for any rational number r between 2 and 5, there exists a graph G with circular flow number r. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 304–318, 2003  相似文献   

7.
In this paper we provide a new arithmetic characterization of the levels of the og‐time hierarchy (LH). We define arithmetic classes and that correspond to ‐LOGTIME and ‐LOGTIME, respectively. We break and into natural hierarchies of subclasses and . We then define bounded arithmetic deduction systems ′ whose ‐definable functions are precisely B( ‐LOGTIME). We show these theories are quite strong in that (1) LIOpen proves for any fixed m that , (2) TAC, a theory that is slightly stronger than ′ whose (LH)‐definable functions are LH, proves LH is not equal to ‐TIME(s) for any m> 0, where 2sL, s(n) ∈ ω(log n), and (3) TAC proves LH ≠ for all k and m. We then show that the theory TAC cannot prove the collapse of the polynomial hierarchy. Thus any such proof, if it exists, must be argued in a stronger systems than ours.  相似文献   

8.
Using a suitable orientation, we give a short proof of a strengthening of a result of Czumaj and Strothmann 4 : Every 2‐edge‐connected graph G contains a spanning tree T with the property that for every vertex v. As an analogue of this result in the directed case, we prove that every 2‐arc‐strong digraph D has an out‐branching B such that . A corollary of this is that every k‐arc‐strong digraph D has an out‐branching B such that , where . We conjecture that in this case would be the right (and best possible) answer. If true, this would again imply a strengthening of a result from 4 concerning spanning trees with small degrees in k‐connected graphs when k ≥ 2. We prove that for acyclic digraphs the existence of an out‐branching satisfying prescribed bounds on the out‐degrees of each vertex can be checked in polynomial time. A corollary of this is that the existence of arc‐disjoint branchings , , where the first is an out‐branching rooted at s and the second an in‐branching rooted at t, can be checked in polynomial time for the class of acyclic digraphs © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 297–307, 2003  相似文献   

9.
Let n > 1 be an integer and let a2,a3,…,an be nonnegative integers such that . Then can be factored into ‐factors, ‐factors,…, ‐factors, plus a 1‐factor. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 151–161, 2002  相似文献   

10.
We consider the equation ℝ, where , for ℝ, (ℝ), (ℝ), (ℝ), (ℝ) := C(ℝ)). We give necessary and sufficient conditions under which, regardless of , the following statements hold simultaneously: I) For any (ℝ) Equation (0.1) has a unique solution (ℝ) where $\int ^{\infty}_{-\infty}$ ℝ. II) The operator (ℝ) → (ℝ) is compact. Here is the Green function corresponding to (0.1). This result is applied to study some properties of the spectrum of the Sturm–Liouville operator.  相似文献   

11.
The generalized Randi?; index of a tree T is the sum over the edges of T of where is the degree of the vertex x in T. For all , we find the minimal constant such that for all trees on at least 3 vertices, , where is the number of vertices of T. For example, when . This bound is sharp up to the additive constant—for infinitely many n we give examples of trees T on n vertices with . More generally, fix and define , where is the number of leaves of T. We determine the best constant such that for all trees on at least 3 vertices, . Using these results one can determine (up to terms) the maximal Randi?; index of a tree with a specified number of vertices and leaves. Our methods also yield bounds when the maximum degree of the tree is restricted. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 270–286, 2007  相似文献   

12.
Let be bounded Lipschitz and relatively open. We show that the solution to the linear first order system 1 : (1) vanishes if and , (e.g. ). We prove to be a norm if with , for some p, q > 1 with 1/p + 1/q = 1 and . We give a new proof for the so called ‘in-finitesimal rigid displacement lemma’ in curvilinear coordinates: Let , satisfy for some with . Then there are and a constant skew-symmetric matrix , such that . (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The work deals with a combinatorial problem of P. Erd?s and L. Lovász concerning simple hypergraphs. Let denote the minimum number of edges in an n‐uniform simple hypergraph with chromatic number at least . The main result of the work is a new asymptotic lower bound for . We prove that for large n and r satisfying the following inequality holds where . This bound improves previously known bounds for . The proof is based on a method of random coloring. We have also obtained results concerning colorings of h‐simple hypergraphs. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

14.
In this paper we study the determinacy strength of infinite games in the Cantor space and compare them with their counterparts in the Baire space. We show the following theorems: 1. RCA0 ? ‐Det* ? ‐Det* ? WKL0. 2. RCA0 ? ( )2‐Det* ? ACA0. 3. RCA0 ? ‐Det* ? ‐Det* ? ‐Det ? ‐Det ? ATR0. 4. For 1 < k < ω, RCA0 ? ( )k ‐Det* ? ( )k –1‐Det. 5. RCA0 ? ‐Det* ? ‐Det. Here, Det* (respectively Det) stands for the determinacy of infinite games in the Cantor space (respectively the Baire space), and ( )k is the collection of formulas built from formulas by applying the difference operator k – 1 times. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Let be an arbitrary integer base and let be the number of different prime factors of with , . Further let be the set of points on the unit circle with finite –adic expansions of their coordinates and let be the set of angles of the points . Then is an additive group which is the direct sum of infinite cyclic groups and of the finite cyclic group . If in case of the points of are arranged according to the number of digits of their coordinates, then the arising sequence is uniformly distributed on the unit circle. On the other hand, in case of the only points in are the exceptional points (1, 0), (0, 1), (–1, 0), (0, –1). The proofs are based on a canonical form for all integer solutions of .  相似文献   

16.
In this paper, we prove the exponential decay as time goes to infinity of regular solutions of the problem for the beam equation with memory and weak damping where is a non‐cylindrical domains of ?n+1 (n?1) with the lateral boundary and α is a positive constant. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Let Γ be an infinite, locally finite, connected graph with distance function δ. Given a ray P in Γ and a constant C ≥ 1, a vertex‐sequence is said to be regulated by C if, for all n??, never precedes xn on P, each vertex of P appears at most C times in the sequence, and . R. Halin (Math. Ann., 157, 3 , 125–137) defined two rays to be end‐equivalent if they are joined by infinitely many pairwise‐disjoint paths; the resulting equivalence classes are called ends. More recently H. A. Jung (Graph Structure Theory, Contemporary Mathematics, 147, 6 , 477–484) defined rays P and Q to be b‐equivalent if there exist sequences and VQ regulated by some constant C ≥ 1 such that for all n??; he named the resulting equivalence classes b‐fibers. Let denote the set of nondecreasing functions from into the set of positive real numbers. The relation (called f‐equivalence) generalizes Jung's condition to . As f runs through , uncountably many equivalence relations are produced on the set of rays that are no finer than b‐equivalence while, under specified conditions, are no coarser than end‐equivalence. Indeed, for every Γ there exists an “end‐defining function” that is unbounded and sublinear and such that implies that P and Q are end‐equivalent. Say if there exists a sublinear function such that . The equivalence classes with respect to are called bundles. We pursue the notion of “initially metric” rays in relation to bundles, and show that in any bundle either all or none of its rays are initially metric. Furthermore, initially metric rays in the same bundle are end‐equivalent. In the case that Γ contains translatable rays we give some sufficient conditions for every f‐equivalence class to contain uncountably many g‐equivalence classes (where ). We conclude with a variety of applications to infinite planar graphs. Among these, it is shown that two rays whose union is the boundary of an infinite face of an almost‐transitive planar map are never bundle‐ equivalent. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 125–153, 2007  相似文献   

18.
For each 0 < s < 1, define where , denote respectively the s‐dimensional packing measure and Hausdorff measure, and the infimum is taken over all the sets E ⊂ R with . In this paper we give a nontrivial estimation of c(s), namely, for each 0 < s < 1, where . As an application, we obtain a lower density theorem for Hausdorff measures.  相似文献   

19.
What is the minimum order of a Hadamard matrix that contains an a by b submatrix of all 1's? Newman showed that where c? denotes the smallest order greater than or equal to c for which a Hadamard matrix exists. It follows that if 4 divides both a and b, and if the Hadamard conjecture is true, then . We establish the improved bounds for min {a,b} ≥ 2. The Hadamard conjecture therefore implies that if 4 divides both 2ab and ?a/2? ?b/2?, then (a, b) = 2 · max {?a/2?b, ?b/2?a}. Our lower bound comes from a counting argument, while our upper bound follows from a sub‐multiplicative property of : Improvements in our upper bound occur when suitable conference matrices or Bush‐type Hadamard matrices exist. We conjecture that any (1,?1)‐matrix of size a by b occurs as a submatrix of some Hadamard matrix of order at most . © 2005 Wiley Periodicals, Inc. J Combin Designs  相似文献   

20.
For any integer n, let be a probability distribution on the family of graphs on n vertices (where every such graph has nonzero probability associated with it). A graph Γ is ‐almost‐universal if Γ satisifies the following: If G is chosen according to the probability distribution , then G is isomorphic to a subgraph of Γ with probability 1 ‐ . For any p ∈ [0,1], let (n,p) denote the probability distribution on the family of graphs on n vertices, where two vertices u and v form an edge with probability p, and the events {u and v form an edge}; u,vV (G) are mutually independent. For k ≥ 4 and n sufficiently large we construct a ‐almost‐universal‐graph on n vertices and with O(n)polylog(n) edges, where q = ? ? for such k ≤ 6, and where q = ? ? for k ≥ 7. The number of edges is close to the lower bound of Ω( ) for the number of edges in a universal graph for the family of graphs with n vertices and maximum degree k. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号