首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An asymmetric difunctional initiator 2‐phenyl‐2‐[(2,2,6,6 tetramethylpiperidino)oxy] ethyl 2‐bromo propanoate ( 1 ) was used for the synthesis of ABC‐type methyl methacrylate (MMA)‐tert‐butylacrylate (tBA)‐styrene (St) triblock copolymers via a combination of atom transfer radical polymerization (ATRP) and stable free‐radical polymerization (SFRP). The ATRP‐ATRP‐SFRP or SFRP‐ATRP‐ATRP route led to ABC‐type triblock copolymers with controlled molecular weight and moderate polydispersity (Mw/Mn < 1.35). The block copolymers were characterized by gel permeation chromatography and 1H NMR. The retaining chain‐end functionality and the applying halide exchange afforded high blocking efficiency as well as maintained control over entire routes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2025–2032, 2002  相似文献   

2.
Vinyl acetate and vinyl chloroacetate were copolymerized in the presence of a bis(trifluoro‐2,4‐pentanedionato)cobalt(II) complex and 2,2′‐azobis(4‐methoxy‐2,4‐dimethylvaleronitrile) at 30 °C, forming a cobalt‐capped poly(vinyl acetate‐co‐vinyl chloroacetate). The addition of 2,2,6,6‐tetramethyl‐1‐piperidinyloxy after a certain degree of copolymerization was reached afforded 2,2,6,6‐tetramethyl‐1‐piperidinyloxy‐terminated poly(vinyl acetate‐co‐vinyl chloroacetate) (PVOAc–MI; number‐average molecular weight = 31,000, weight‐average molecular weight/number‐average molecular weight = 1.24). A 1H NMR study of the resulting PVOAc–MI revealed quantitative terminal 2,2,6,6‐tetramethyl‐1‐piperidinyloxy functionality and the presence of 5.5 mol % vinyl chloroacetate in the copolymer. The atom transfer radical polymerization (ATRP) of styrene (St) was studied with ethyl chloroacetate as a model initiator and five different Cu‐based catalysts. Catalysts with bis(2‐pyridylmethyl)octadecylamine (BPMODA) or tris(2‐pyridylmethyl)amine (TPMA) ligands provided the highest initiation efficiency and best control over the polymerization of St. The grafting‐from ATRP of St from PVOAc–MI catalyzed by copper complexes with BPMODA or TPMA ligands provided poly(vinyl acetate)‐graft‐polystyrene copolymers with relatively high polydispersity (>1.5) because of intermolecular coupling between growing polystyrene (PSt) grafts. After the hydrolysis of the graft copolymers, the cleaved PSt side chains had a monomodal molecular weight distribution with some tailing toward the lower number‐average molecular weight region because of termination. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 447–459, 2007  相似文献   

3.
An ABC‐type miktoarm star polymer was prepared with a core‐out method via a combination of ring‐opening polymerization (ROP), stable free‐radical polymerization (SFRP), and atom transfer radical polymerization (ATRP). First, ROP of ϵ‐caprolactone was carried out with a miktofunctional initiator, 2‐(2‐bromo‐2‐methyl‐propionyloxymethyl)‐3‐hydroxy‐2‐methyl‐propionic acid 2‐phenyl‐2‐(2,2,6,6‐tetramethyl‐piperidin‐1‐yl oxy)‐ethyl ester, at 110 °C. Second, previously obtained poly(ϵ‐caprolactone) (PCL) was used as a macroinitiator for SFRP of styrene at 125 °C. As a third step, this PCL–polystyrene (PSt) precursor with a bromine functionality in the core was used as a macroinitiator for ATRP of tert‐butyl acrylate in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 100 °C. This produced an ABC‐type miktoarm star polymer [PCL–PSt–poly(tert‐butyl acrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.37). The obtained polymers were characterized with gel permeation chromatography and 1H NMR. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4228–4236, 2004  相似文献   

4.
Bulk atom transfer radical polymerization (ATRP) of styrene was carried out at 110 °C using benzal bromide as bifunctional initiator and 1-bromoethyl benzene as monofunctional initiator. CuBr/2,2′-bipyridyl was used as the ATRP catalyst. The polymerization kinetic data for styrene with both initiators was measured and compared with a mathematical model based on the method of moments and another one using Monte Carlo simulation. An empirical correlation was incorporated into the model to account for diffusion-controlled termination reactions. Both models can predict monomer conversion, polymer molecular weight averages, and polydispersity index. In addition, the Monte Carlo model can also predict the full molecular weight distribution of the polymer. Our experimental results agree with our model predictions that bifunctional initiators can produce polymers with higher molecular weights and narrower molecular weight distributions than monofunctional initiators. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2212–2224, 2007  相似文献   

5.
The living radical polymerization of styrene in bulk was successfully performed with a tetraethylthiuram disulfide/copper bromide/2,2′‐bipyridine (bpy) initiating system. The initiator Et2NCS2Br and the catalyst cuprous bromide (CuBr) were produced from the reactants in the system through in situ atom transfer radical polymerization (ATRP). A plot of natural logarithm of the ratio of original monomer concentration to monomer concentration at present, ln([M]0/[M]) versus time gave a straight line, indicating that the kinetics was first‐order. The number‐average molecular weight from gel permeation chromatography (GPC) of obtained polystyrenes did not agree well with the calculated number‐average molecular weight but did correspond to a 0.5 initiator efficiency. The polydispersity index (i.e., the weight‐average molecular weight divided by the number‐average molecular weight) of obtained polymers was as low as 1.30. The resulting polystyrene with α‐diethyldithiocarbamate and ω‐Br end groups could initiate methyl methacrylate polymerization in the presence of CuBr/bpy or cuprous chloride/bpy complex catalyst through a conventional ATRP process. The block polymer was characterized with GPC, 1H NMR, and differential scanning calorimetry. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4001–4008, 2001  相似文献   

6.
A series of new liquid crystalline homopolymers, copolymers, and block copolymers were polymerized from styrene‐macroinitiator ( SMi ) and methacrylates with pendent 4,4′‐bis(biphenyl)fluorene ( M1 ) and biphenyl‐4‐ylfluorene ( M2 ) groups through atom transfer radical polymerization (ATRP). The number‐average molecular weights (Mn) of polymers P1 ‐ P4 were 10,007, 14,852, 6,275, and 10,463 g mol?1 with polydispersity indices values of 1.21, 1.15, 1.31, and 1.22, respectively. All polymers exhibit the nematic phase. The thermal, mesogenic, and photoluminescent properties of all polymers were investigated. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4564–4572, 2007  相似文献   

7.
Well‐defined trifluoromethylated poly(phenylene oxide)s were synthesized via nucleophilic aromatic substitution (SNAr) reaction by a chain‐growth polymerization manner. Polymerization of potassium 4‐fluoro‐3‐(trifluoromethyl)phenolate in the presence of an appropriate initiator yielded polymers with molecular weights of ~4000 and polydispersity indices of <1.2, which were characterized by 1H nuclear magnetic resonance spectroscopy and gel permeation chromatography. Initiating sites for atom transfer radical polymerization (ATRP) were introduced at the either side of chain ends of the poly(phenylene oxide), and used for ATRP of styrene and methyl methacrylate, yielding well‐defined rod‐coil block copolymers. Differential scanning calorimetry study indicated that the well‐defined trifluoromethylated poly(phenylene oxide)s showed high crystallinity and were immiscible with polystyrene. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1049–1057, 2010  相似文献   

8.
A trifunctional initiator, 2‐phenyl‐2‐[(2,2,6,6‐tetramethyl)‐1‐piperidinyloxy] ethyl 2,2‐bis[methyl(2‐bromopropionato)] propionate, was synthesized and used for the synthesis of miktoarm star AB2 and miktoarm star block AB2C2 copolymers via a combination of stable free‐radical polymerization (SFRP) and atom transfer radical polymerization (ATRP) in a two‐step or three‐step reaction sequence, respectively. In the first step, a polystyrene (PSt) macroinitiator with dual ω‐bromo functionality was obtained by SFRP of styrene (St) in bulk at 125 °C. Next, this PSt precursor was used as a macroinitiator for ATRP of tert‐butyl acrylate (tBA) in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 80 °C, affording miktoarm star (PSt)(PtBA)2 [where PtBA is poly(tert‐butyl acrylate)]. In the third step, the obtained St(tBA)2 macroinitiator with two terminal bromine groups was further polymerized with methyl methacrylate by ATRP, and this resulted in (PSt)(PtBA)2(PMMA)2‐type miktoarm star block copolymer [where PMMA is poly(methyl methacrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.38). All polymers were characterized by gel permeation chromatography and 1H NMR. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2542–2548, 2003  相似文献   

9.
New supported catalytic systems based on the immobilization of a ligand onto supported (co)polymers were prepared, allowing copper immobilization onto a solid support during the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). These supported catalysts were elaborated by the ATRP of 2‐vinyl‐4,4‐dimethyl‐5‐oxazolone and/or styrene onto a Wang resin initiator. Two different approaches were used, involving well‐defined architectures synthesized by ATRP. First, a supported electrophilic homopolymer [Wang‐g‐poly(2‐vinyl‐4,4‐dimethyl‐5‐oxazolone)] was synthesized to obtain an azlactone ring at each repetitive unit, and a supported statistical copolymer [Wang‐g‐poly(2‐vinyl‐4,4‐dimethyl‐5‐oxazolone‐stat‐styrene)] was synthesized to introduce a distance between the azlactone rings. The azlactone‐based (co)polymers were then modified by a reaction with N,N,N′,N′‐tetraethyldiethylenetriamine (TEDETA) to create supported complexing sites for copper bromide. The ATRP of MMA was studied with these supported ligands, and a first‐order kinetic plot was obtained, but high polydispersity indices of the obtained poly(methyl methacrylate) were observed (polydispersity index > 2). On the other hand, the supported ATRP of styrene was performed, followed by the nucleophilic substitution of bromine by TEDETA (Wang‐g‐polystyrene–N,N,N′,N′‐tetraethyldiethylenetriamine) at the chain end of the grafted polystyrene chains. This strategy led the ligand away from the core bead, depending on the length of the polystyrene block (number‐average molecular weight determined by size exclusion chromatography = 1100–2250 g/mol). These supported complexes mediated a controlled polymerization of MMA, yielding polymers with controlled molar masses and low polydispersity indices. Moreover, after the polymerization, 96% of the initial copper was kept in the beads. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5316–5328, 2006  相似文献   

10.
2‐[(Diphenylphosphino)methyl]pyridine (DPPMP) was successfully used as a bidentate ligand in the iron‐mediated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) with various initiators and solvents. The effect of the catalytic system on ATRP was studied systematically. Most of the polymerizations with DPPMP ligand were well controlled with a linear increase in the number‐average molecular weights (Mn) versus conversion and relatively low molecular weight distributions (Mw/Mn = 1.10–1.3) being observed throughout the reactions, and the measured molecular weights matched the predicted values. Initially added iron(III) bromide improved the controllability of the polymerization reactions in terms of molecular weight control. The ratio of ligand to metal influenced the controllability of ATRP system, and the optimum ratio was found to be 2:1. It was shown that ATRP of MMA with FeX2/DPPMP catalytic system (X = Cl, Br) initiated by 2‐bromopropionitrile (BPN) was controlled more effectively in toluene than in polar solvents. The rate of polymerization increased with increasing the polymerization temperature and the apparent activation energy was calculated to be 56.7 KJ mol?1. In addition, reverse ATRP of MMA was able to be successfully carried out using AIBN in toluene at 80 °C. Polymerization of styrene (St) was found to be controlled well by using the PEBr/FeBr2/DPPMP system in DMF at 110 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2922–2935, 2008  相似文献   

11.
Block copolymers of hyperbranched polyethylene (PE) and linear polystyrene (PS) or poly(methyl methacrylate) (PMMA) were synthesized via atom transfer radical polymerization (ATRP) with hyperbranched PE macroinitiators. The PE macroinitiators were synthesized through a “living” polymerization of ethylene catalyzed with a Pd‐diimine catalyst and end‐capped with 4‐chloromethyl styrene as a chain quenching agent in one step. The macroinitiator and block copolymer samples were characterized by gel permeation chromatography, 1H and 13C NMR, and differential scanning calorimetry. The hyperbranched PE chains had narrow molecular weight distribution and contained a single terminal benzyl chloride per chain. Both hyperbranched PE and linear PS or PMMA blocks had well‐controlled molecular weights. Slow initiation was observed in ATRP because of steric effect of hyperbranched structures, resulting in slightly broad polydispersity index in the block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3024–3032, 2010  相似文献   

12.
Different acrylate oligomers were synthesized by atom transfer radical polymerization in the presence of a transfer agent and CuBr/1,1,4,7,10,10‐hexamethyltriethylenetetramine. The functionality in bromine was determined by 1H NMR. These oligomers were coupled in the presence of Cu(0) and the ligand 2,2′‐bipyridine. The coupling yield was determined by size exclusion chromatography and NMR analysis and depended on the nature of the monomer and not on the molecular weight. In other words, the preliminary functionalization of the brominated chain end with styrene increased the coupling yield. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2377‐2394, 2005  相似文献   

13.
With CuBr/tetramethylguanidino‐tris(2‐aminoethyl)amine (TMG3‐TREN) as the catalyst, the atom transfer radical polymerization (ATRP) of methyl methacrylate, n‐butyl acrylate, styrene, and acrylonitrile was conducted. The catalyst concentration of 0.5 equiv with respect to the initiator was enough to prepare well‐defined poly(methyl methacrylate) in bulk from methyl methacrylate monomer. For ATRP of n‐butyl acrylate, the catalyst behaved in a manner similar to that reported for CuBr/tris[2‐(dimethylamino)ethyl]amine. A minimum of 0.05 equiv of the catalyst with respect to the initiator was required to synthesize the homopolymer of the desired molecular weight and low polydispersity at the ambient temperature. In the case of styrene, ATRP with this catalyst occurred only when a 1:1 catalyst/initiator ratio was used in the presence of Cu(0) in ethylene carbonate. The polymerization of acrylonitrile with CuBr/TMG3‐TREN was conducted successfully with a catalyst concentration of 50% with respect to the initiator in ethylene carbonate. End‐group analysis for the determination of the high degree of functionality of the homopolymers synthesized by the new catalyst was determined by NMR spectroscopy. The isotactic parameter calculated for each system indicated that the homopolymers were predominantly syndiotactic, signifying that the tacticity remained the same, as already reported for ATRP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5906–5922, 2005  相似文献   

14.
Densely grafting copolymers of ethyl cellulose with polystyrene and poly(methyl methacrylate) were synthesized through atom transfer radical polymerization (ATRP). First, the residual hydroxyl groups on the ethyl cellulose reacted with 2‐bromoisobutyrylbromide to yield 2‐bromoisobutyryloxy groups, known to be an efficient initiator for ATRP. Subsequently, the functional ethyl cellulose was used as a macroinitiator in the ATRP of methyl methacrylate and styrene in toluene in conjunction with CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalyst system. The molecular weight of the graft copolymers increased without any trace of the macroinitiator, and the polydispersity was narrow. The molecular weight of the side chains increased with the monomer conversion. A kinetic study indicated that the polymerization was first‐order. The morphology of the densely grafted copolymer in solution was characterized through laser light scattering. The individual densely grafted copolymer molecules were observed through atomic force microscopy, which confirmed the synthesis of the densely grafted copolymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4099–4108, 2005  相似文献   

15.
A series of polymers tethered with bis‐MPA dendrons was synthesized by a combination of divergent growth and atom transfer radical polymerization (ATRP). Macromonomers of first and second generation were synthesized utilizing the acetonide protected anhydride of bis‐MPA as the generic esterfication agent. The macromonomers were polymerized in a controlled fashion by ATRP utilizing Cu(I)/Cu(II) and N‐propyl‐2‐pyridylmethanamine as the halogen/ligand system. The end‐groups of these polymers were further tailored to achieve hydroxyl, acetate, and aliphatic hexadecyl functionality. With this approach all polymers will emanate from the same backbone, enabling for an evaluation of both the generation and end‐group dependent properties. Furthermore, a dendronized tri‐block copolymer was synthesized. All materials were analyzed by 1H and 13C NMR, as well as size‐exclusion chromatography (SEC). The SEC analysis revealed that the molecular weights of the divergently grown dendronized polymers increased with increasing generation while the polydispersity (PDI) was kept low. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3852–3867, 2005  相似文献   

16.
The atom transfer radical polymerizations (ATRPs) of styrene initiated by a novel initiator, ethyl 2‐N,N‐(diethylamino)dithiocarbamoyl‐butyrate (EDDCB), in both bulk and solution were successfully carried out in the presence of copper(I) bromide (CuBr) and N,N,N′,N,N″‐pentamethyldiethylenetriamine at 115 °C. The polymerization rate was first‐order with respect to the monomer concentration, and the molecular weights of the obtained polymers increased linearly with the monomer conversions with very narrow molecular weight distributions (as low as 1.17) up to higher conversions in both bulk and solution. The polymerization rate was influenced by various solvents in different degrees in the order of cyclohexanone > dimethylformamide > toluene. The molecular weight distributions of the produced polymers in cyclohexanone were higher than those in dimethylformamide and toluene. The results of 1H NMR analysis and chain extension confirmed that well‐defined polystyrene bearing a photo‐labile N,N‐(diethylamino)dithiocarbamoyl group was obtained via ATRP of styrene with EDDCB as an initiator. The polymerization mechanism for this novel initiation system is a common ATRP process. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 32–41, 2006  相似文献   

17.
A bromine capped star‐shaped poly(methyl methacrylate) (S‐PMMA‐Br) was synthesized with CuBr/sparteine/PT‐Br as a catalyst and initiator to polymerize methyl methacrylate (MMA) according to atom transfer radical polymerization (ATRP). Then, with S‐PMMA‐Br as a macroinitiator, a series of new liquid crystal rod–coil star block copolymers with different molecular weights and low polydispersity were obtained by this method. The block architecture {coil‐conformation of the MMA segment and rigid‐rod conformation of 2,5‐bis[(4‐methoxyphenyl)oxycarbonyl] styrene segment} of the four‐armed rod–coil star block copolymers were characterized by 1H NMR. The liquid‐crystalline behavior of these copolymers was studied by differential scanning calorimetry and polarized optical microscopy. We found that the liquid‐crystalline behavior depends on the molecular weight of the rigid segment; only the four‐armed rod–coil star block copolymers with each arm's Mn,GPC of the rigid block beyond 0.91 × 104 g/mol could form liquid‐crystalline phases above the glass‐transition temperature of the rigid block. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 733–741, 2005  相似文献   

18.
The controlled free‐radical polymerization of styrene and chloromethylstyrene monomers in the presence of 2,2,6,6‐tetramethyl‐1‐piperidinyloxyl (TEMPO) has been studied with the aim of synthesizing block copolymers with well‐defined structures. First, TEMPO‐capped poly(chloromethylstyrene) was prepared. Among several initiating systems [self‐initiation, dicumyl peroxide, and 2,2′‐azobis(isobutyronitrile)], the last offered the best compromise for obtaining a good control of the polymerization and a fast polymerization rate. The rate of the TEMPO‐mediated polymerization of chloromethylstyrene was independent of the initial concentration of TEMPO but unexpectedly higher than the rate of the thermal self‐initiated polymerization of chloromethylstyrene. Transfer reactions to the chloromethyl groups were thought to play an important role in the polymerization kinetics and the polydispersity index of the resulting poly(chloromethylstyrene). Second, this first block was used as a macroinitiator in the polymerization of styrene to obtain the desired poly(chloromethylstyrene‐b‐styrene) block copolymer. The kinetic modeling of the block copolymerization was in good agreement with experimental data. The block copolymers obtained in this work exhibited a low polydispersity index (weight‐average molecular weight/number‐average molecular weight < 1.5) and could be chemically modified with nucleophilic substitution reactions on the benzylic site, opening the way to a great variety of architectures. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3845–3854, 2000  相似文献   

19.
The copper‐catalyzed atom transfer radical polymerization (ATRP) of poly(propylene glycol) methacrylate (PPGM) in solution to produce linear and starlike polymers is reported, using methylethyl ketone as the solvent and a temperature of 80 °C. The ATRP system used was efficient for polymerization of the functionalized monomer without protecting hydroxyl end groups of monomer. The polymerizations were consistent with “living” or controlled processes, as revealed by the linear evolution of molecular weight with conversion. Increasing the [M]0:[I]0 ratio resulted in increasing molecular weights, whereas the polydispersity indices remained low (Mw/Mn < 1.4) even at high conversion. Decreasing the [CuBr]0:[I]0 ratio resulted in lower conversions, slightly larger polydispersities, and decreased molecular weights, likely resulting from a lower initiation efficiency. Polymers were characterized by 1H and 13C NMR; molecular weights of polymers with low degrees of polymerization were estimated by end‐group analysis from 13C NMR spectra obtained using distortionless enhancement by polarization transfer and the gated decoupling techniques. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 334–343, 2002  相似文献   

20.
A series of new reversible addition–fragmentation chain transfer (RAFT) agents with cyanobenzyl R groups were synthesized. In comparison with other dithioester RAFT agents, these new RAFT agents were odorless or low‐odor, and this made them much easier to handle. The kinetics of methyl methacrylate radical polymerizations mediated by these RAFT agents were investigated. The polymerizations proceeded in a controlled way, the first‐order kinetics evolved in a linear fashion with time, the molecular weights increased linearly with the conversions, and the polydispersities were very narrow (~1.1). A poly[(methyl methacrylate)‐block‐polystyrene] block copolymer was prepared (number‐average molecular weight = 42,600, polydispersity index = 1.21) from a poly(methyl methacrylate) macro‐RAFT agent. These new RAFT agents also showed excellent control over the radical polymerization of styrenics and acrylates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1535–1543, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号