首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes and studies the performance of a preconditioner suitable for solving a class of symmetric positive definite systems, Âx=b, which we call plevel lower rank extracted systems (plevel LRES), by the preconditioned conjugate gradient method. The study of these systems is motivated by the numerical approximation of integral equations with convolution kernels defined on arbitrary p‐dimensional domains. This is in contrast to p‐level Toeplitz systems which only apply to rectangular domains. The coefficient matrix, Â, is a principal submatrix of a p‐level Toeplitz matrix, A, and the preconditioner for the preconditioned conjugate gradient algorithm is provided in terms of the inverse of a p‐level circulant matrix constructed from the elements of A. The preconditioner is shown to yield clustering in the spectrum of the preconditioned matrix which leads to a substantial reduction in the computational cost of solving LRE systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
We study the numerical solution of a block system T m,n x=b by preconditioned conjugate gradient methods where T m,n is an m×m block Toeplitz matrix with n×n Toeplitz blocks. These systems occur in a variety of applications, such as two-dimensional image processing and the discretization of two-dimensional partial differential equations. In this paper, we propose new preconditioners for block systems based on circulant preconditioners. From level-1 circulant preconditioner we construct our first preconditioner q 1(T m,n ) which is the sum of a block Toeplitz matrix with Toeplitz blocks and a sparse matrix with Toeplitz blocks. By setting selected entries of the inverse of level-2 circulant preconditioner to zero, we get our preconditioner q 2(T m,n ) which is a (band) block Toeplitz matrix with (band) Toeplitz blocks. Numerical results show that our preconditioners are more efficient than circulant preconditioners.  相似文献   

3.
In this paper we are interested in the fast and efficient solution of nm×nm symmetric positive definite ill-conditioned Block Toeplitz with Toeplitz Blocks (BTTB) systems of the form T nm (f)x=b, where the generating function f is a priori known. The preconditioner that we propose and analyze is an extension of the one proposed in (D. Noutsos and P. Vassalos, Comput. Math. Appl., 56 (2008), pp. 1255–1270) and it arises as a product of a Block band Toeplitz matrix and matrices that may belong to any trigonometric matrix algebra. The underlying idea of the proposed scheme is to embody the well known advantages characterizing each component of the product when used alone. As a result we obtain spectral equivalence and a weak clustering of the eigenvalues of the preconditioned matrix around unity, ensuring the convergence of the Preconditioned Conjugate Gradient (PCG) method with a number of iterations independent of the partial dimensions. Finally, we compare our method with techniques already employed in the literature. A wide range of numerical experiments confirms the effectiveness of the proposed procedure and the adherence to the theoretical analysis.  相似文献   

4.
We use the normalized preconditioned conjugate gradient method with Strang’s circulant preconditioner to solve a nonsymmetric Toeplitz system Anx=b, which arises from the discretization of a partial integro-differential equation in option pricing. By using the definition of family of generating functions introduced in [16], we prove that Strang’s circulant preconditioner leads to a superlinear convergence rate under certain conditions. Numerical results exemplify our theoretical analysis.  相似文献   

5.
Boundary value methods (BVMs) for ordinary differential equations require the solution of non‐symmetric, large and sparse linear systems. In this paper, these systems are solved by using the generalized minimal residual (GMRES) method. A block‐circulant preconditioner with circulant blocks (BCCB preconditioner) is proposed to speed up the convergence rate of the GMRES method. The BCCB preconditioner is shown to be invertible when the BVM is Ak1,k2‐stable. The spectrum of the preconditioned matrix is clustered and therefore, the preconditioned GMRES method converges fast. Moreover, the operation cost in each iteration of the preconditioned GMRES method by using our BCCB preconditioner is less than that required by using block‐circulant preconditioners proposed earlier. In numerical experiments, we compare the number of iterations of various preconditioners. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
As proposed by R. H. Chan and M. K. Ng (1993), linear systems of the form T [ f ] x = b , where T [ f ] denotes the n×n Toeplitz matrix generated by the function f, can be solved using iterative solvers with as a preconditioner. This article aims at generalizing this approach to the case of Toeplitz‐block matrices and matrix‐valued generating functions F . We prove that if F is Hermitian positive definite, most eigenvalues of the preconditioned matrix T [ F −1]T[ F ] are clustered around one. Numerical experiments demonstrate the performance of this preconditioner.  相似文献   

7.
The finite difference discretization of the spatial fractional diffusion equations gives discretized linear systems whose coefficient matrices have a diagonal‐plus‐Toeplitz structure. For solving these diagonal‐plus‐Toeplitz linear systems, we construct a class of diagonal and Toeplitz splitting iteration methods and establish its unconditional convergence theory. In particular, we derive a sharp upper bound about its asymptotic convergence rate and deduct the optimal value of its iteration parameter. The diagonal and Toeplitz splitting iteration method naturally leads to a diagonal and circulant splitting preconditioner. Analysis shows that the eigenvalues of the corresponding preconditioned matrix are clustered around 1, especially when the discretization step‐size h is small. Numerical results exhibit that the diagonal and circulant splitting preconditioner can significantly improve the convergence properties of GMRES and BiCGSTAB, and these preconditioned Krylov subspace iteration methods outperform the conjugate gradient method preconditioned by the approximate inverse circulant‐plus‐diagonal preconditioner proposed recently by Ng and Pan (M.K. Ng and J.‐Y. Pan, SIAM J. Sci. Comput. 2010;32:1442‐1464). Moreover, unlike this preconditioned conjugate gradient method, the preconditioned GMRES and BiCGSTAB methods show h‐independent convergence behavior even for the spatial fractional diffusion equations of discontinuous or big‐jump coefficients.  相似文献   

8.
In this paper, we propose a method to generalize Strang's circulant preconditioner for arbitrary n-by-n matrices An. The th column of our circulant preconditioner Sn is equal to the th column of the given matrix An. Thus if An is a square Toeplitz matrix, then Sn is just the Strang circulant preconditioner. When Sn is not Hermitian, our circulant preconditioner can be defined as . This construction is similar to the forward-backward projection method used in constructing preconditioners for tomographic inversion problems in medical imaging. We show that if the matrix An has decaying coefficients away from the main diagonal, then is a good preconditioner for An. Comparisons of our preconditioner with other circulant-based preconditioners are carried out for some 1-D Toeplitz least squares problems: min ∥ b - Ax∥2. Preliminary numerical results show that our preconditioner performs quite well, in comparison to other circulant preconditioners. Promising test results are also reported for a 2-D deconvolution problem arising in ground-based atmospheric imaging.  相似文献   

9.
We perform a spectral analysis of the preconditioned Hermitian/skew‐Hermitian splitting (PHSS) method applied to multilevel block Toeplitz linear systems in which the coefficient matrix Tn(f) is associated with a Lebesgue integrable matrix‐valued function f. When the preconditioner is chosen as a Hermitian positive definite multilevel block Toeplitz matrix Tn(g), the resulting sequence of PHSS iteration matrices Mn belongs to the generalized locally Toeplitz class. In this case, we are able to compute the symbol ?(f,g) describing the asymptotic eigenvalue distribution of Mnwhen n and the matrix size diverges. By minimizing the infinity norm of the spectral radius of the symbol ?(f,g), we are also able to identify effective PHSS preconditioners Tn(g) for the matrix Tn(f). A number of numerical experiments are presented and commented, showing that the theoretical results are confirmed and that the spectral analysis leads to efficient PHSS methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we consider solving non-convolution type integral equations by the preconditioned conjugate gradient method. The fast dense matrix method is a fast multiplication scheme that provides a dense discretization matrix A approximating a given integral equation. The dense matrix A can be constructed in O(n) operations and requires only O(n) storage where n is the size of the matrix. Moreover, the matrix-vector multiplication A xcan be done in O(n log n) operations. Thus if the conjugate gradient method is used to solve the discretized system, the cost per iteration is O(n log n) operations. However, for some integral equations, such as the Fredholm integral equations of the first kind, the system will be ill-conditioned and therefore the convergence rate of the method will be slow. In these cases, preconditioning is required to speed up the convergence rate of the method. A good choice of preconditioner is the optimal circulant preconditioner which is the minimizer of CA F in Frobenius norm over all circulant matrices C. It can be obtained by taking arithmetic averages of all the entries of A and therefore the cost of constructing the preconditioner is of O(n 2) operations for general dense matrices. In this paper, we develop an O(n log n) method of constructing the preconditioner for dense matrices A obtained from the fast dense matrix method. Application of these ideas to boundary integral equations from potential theory will be given. These equations are ill-conditioned whereas their optimal circulant preconditioned equations will be well-conditioned. The accuracy of the approximation A, the fast construction of the preconditioner and the fast convergence of the preconditioned systems will be illustrated by numerical examples.  相似文献   

11.
We construct a class of quasi‐Toeplitz splitting iteration methods to solve the two‐sided unsteady space‐fractional diffusion equations with variable coefficients. By making full use of the structural characteristics of the coefficient matrix, the method only requires computational costs of O(n log n) with n denoting the number of degrees of freedom. We develop an appropriate circulant matrix to replace the Toeplitz matrix as a preconditioner. We discuss the spectral properties of the quasi‐circulant splitting preconditioned matrix. Numerical comparisons with existing approaches show that the present method is both effective and efficient when being used as matrix splitting preconditioners for Krylov subspace iteration methods.  相似文献   

12.
何颖  刘皞 《计算数学》2021,43(2):177-191
本文研究一类来源于分数阶特征值问题的Toeplitz线性代数方程组的求解.构造Strang循环矩阵作为预处理矩阵来求解该Toeplitz线性代数方程组,分析了预处理后系数矩阵的特征值性质.提出求解该线性代数方程组的预处理广义极小残量法(PGMRES),并给出该算法的计算量.数值算例表明了该方法的有效性.  相似文献   

13.
In this paper we introduce a new preconditioner for banded Toeplitz matrices, whose inverse is itself a Toeplitz matrix. Given a banded Hermitian positive definite Toeplitz matrixT, we construct a Toepliz matrixM such that the spectrum ofMT is clustered around one; specifically, if the bandwidth ofT is , all but eigenvalues ofMT are exactly one. Thus the preconditioned conjugate gradient method converges in +1 steps which is about half the iterations as required by other preconditioners for Toepliz systems that have been suggested in the literature. This idea has a natural extension to non-banded and non-Hermitian Toeplitz matrices, and to block Toeplitz matrices with Toeplitz blocks which arise in many two dimensional applications in signal processing. Convergence results are given for each scheme, as well as numerical experiments illustrating the good convergence properties of the new preconditioner.Partly supported by a travel fund from the Deutsche Forschungsgemeinschaft.Research supported in part by Oak Ridge Associated Universities grant no. 009707.  相似文献   

14.
In this paper, we construct new ω‐circulant preconditioners for non‐Hermitian Toeplitz systems, where we allow the generating function of the sequence of Toeplitz matrices to have zeros on the unit circle. We prove that the eigenvalues of the preconditioned normal equation are clustered at 1 and that for (N, N)‐Toeplitz matrices with spectral condition number 𝒪(Nα) the corresponding PCG method requires at most 𝒪(N log2 N) arithmetical operations. If the generating function of the Toeplitz sequence is a rational function then we show that our preconditioned original equation has only a fixed number of eigenvalues which are not equal to 1 such that preconditioned GMRES needs only a constant number of iteration steps independent of the dimension of the problem. Numerical tests are presented with PCG applied to the normal equation, GMRES, CGS and BICGSTAB. In particular, we apply our preconditioners to compute the stationary probability distribution vector of Markovian queuing models with batch arrival. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we first propose product Toeplitz preconditioners (in an inverse form) for non-Hermitian Toeplitz matrices generated by functions with zeros. Our inverse product-type preconditioner is of the form TF TL-1 TU-1T_F T_L^{-1} T_U^{-1} where T F , T L , and T U are full, band lower triangular, and band upper triangular Toeplitz matrices, respectively. Our basic idea is to decompose the generating function properly such that all factors T F , T L , and T U of the preconditioner are as well-conditioned as possible. We prove that under certain conditions, the preconditioned matrix has eigenvalues and singular values clustered around 1. Then we use a similar idea to modify the preconditioner proposed in Ku and Kuo (SIAM J Sci Stat Comput 13:1470–1487, 1992) to handle the zeros in rational generating functions. Numerical results, including applications to the computation of the stationary probability distribution of Markovian queuing models with batch arrival, are given to illustrate the good performance of the proposed preconditioners.  相似文献   

16.
We are concerned with the study and the design of optimal preconditioners for ill-conditioned Toeplitz systems that arise from a priori known real-valued nonnegative generating functions f(x,y) having roots of even multiplicities. Our preconditioned matrix is constructed by using a trigonometric polynomial θ(x,y) obtained from Fourier/kernel approximations or from the use of a proper interpolation scheme. Both of the above techniques produce a trigonometric polynomial θ(x,y) which approximates the generating function f(x,y), and hence the preconditioned matrix is forced to have clustered spectrum. As θ(x,y) is chosen to be a trigonometric polynomial, the preconditioner is a block band Toeplitz matrix with Toeplitz blocks, and therefore its inversion does not increase the total complexity of the PCG method. Preconditioning by block Toeplitz matrices has been treated in the literature in several papers. We compare our method with their results and we show the efficiency of our proposal through various numerical experiments.This research was co-funded by the European Union in the framework of the program “Pythagoras I” of the “Operational Program for Education and Initial Vocational Training” of the 3rd Community Support Framework of the Hellenic Ministry of Education, funded by national sources (25%) and by the European Social Fund - ESF (75%). The work of the second and of the third author was partially supported by MIUR (Italian Ministry of University and Research), grant number 2004015437.  相似文献   

17.
In this paper we consider various preconditioners for the conjugate gradient (CG) method to solve large linear systems of equations with symmetric positive definite system matrix. We continue the comparison between abstract versions of the deflation, balancing and additive coarse grid correction preconditioning techniques started in (SIAM J. Numer. Anal. 2004; 42 :1631–1647; SIAM J. Sci. Comput. 2006; 27 :1742–1759). There the deflation method is compared with the abstract additive coarse grid correction preconditioner and the abstract balancing preconditioner. Here, we close the triangle between these three methods. First of all, we show that a theoretical comparison of the condition numbers of the abstract additive coarse grid correction and the condition number of the system preconditioned by the abstract balancing preconditioner is not possible. We present a counter example, for which the condition number of the abstract additive coarse grid correction preconditioned system is below the condition number of the system preconditioned with the abstract balancing preconditioner. However, if the CG method is preconditioned by the abstract balancing preconditioner and is started with a special starting vector, the asymptotic convergence behavior of the CG method can be described by the so‐called effective condition number with respect to the starting vector. We prove that this effective condition number of the system preconditioned by the abstract balancing preconditioner is less than or equal to the condition number of the system preconditioned by the abstract additive coarse grid correction method. We also provide a short proof of the relationship between the effective condition number and the convergence of CG. Moreover, we compare the A‐norm of the errors of the iterates given by the different preconditioners and establish the orthogonal invariants of all three types of preconditioners. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
We employ the sine transform-based preconditioner to precondition the shifted Toeplitz matrix An−ρBnAnρBn involved in the Lanczos method to compute the minimum eigenvalue of the generalized symmetric Toeplitz eigenvalue problem Anx=λBnxAnx=λBnx, where AnAn and BnBn are given matrices of suitable sizes. The sine transform-based preconditioner can improve the spectral distribution of the shifted Toeplitz matrix and, hence, can speed up the convergence rate of the preconditioned Lanczos method. The sine transform-based preconditioner can be implemented efficiently by the fast transform algorithm. A convergence analysis shows that the preconditioned Lanczos method converges sufficiently fast, and numerical results show that this method is highly effective for a large matrix.  相似文献   

19.
A particular class of preconditioners for the conjugate gradient method and other iterative methods is proposed for the solution of linear systemsA n,mx=b, whereA n,m is ann×n positive definite block Toeplitz matrix withm×m Toeplitz blocks. In particular we propose a sparse preconditionerP n,m such that the condition number of the preconditioned matrix turns out to be less than a suitable constant independent of bothn andm, even if the condition number ofA n,m tends to . This leads to iterative methods which require a number of steps independent ofm andn in order to reduce the error by a given factor.  相似文献   

20.
An n×n real matrix A is called a bisymmetric matrix if A=AT and A=SnASn, where Sn is an n×n reverse unit matrix. This paper is mainly concerned with solving the following two problems: Problem I Given n×m real matrices X and B, and an r×r real symmetric matrix A0, find an n×n bisymmetric matrix A such that where A([1: r]) is a r×r leading principal submatrix of the matrix A. Problem II Given an n×n real matrix A*, find an n×n matrix  in SE such that where ∥·∥ is Frobenius norm, and SE is the solution set of Problem I. The necessary and sufficient conditions for the existence of and the expressions for the general solutions of Problem I are given. The explicit solution, a numerical algorithm and a numerical example to Problem II are provided. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号