共查询到20条相似文献,搜索用时 1 毫秒
1.
<正>Three-dimensional Monte Carlo simulations of comb-like polymer chains with various backbone lengths N_b,arm lengths N_a and arm densities m are carried out to study the elastic behavior of comb-like polymer chains.The radius of gyration,the shape factors and bond length in different cases during elastic process are calculated,and it is found that the comb-like polymer molecules with longer backbone or shorter arm are more close to linear chains.But the arm density m affects the chain conformation non-monotonously.Some thermodynamic properties are also studied.Average Helmholtz free energy and elastic force f all increase with elongation ratioλfor all chains. 相似文献
2.
Elastic behaviors of uniform star polymer chains with two to seven branches (namely, functionality f = 2-7) are investigated using Monte Carlo simulation and the bond fluctuation model. Here chain dimensions and thermodynamic properties of uniform star polymer chains during the process of tensile elongation are studied, and comparisons with linear chain are also made. Static properties of chains such as chain sizes and asphericities of chains are calculated, and g-value of g = 〈S2〉star/〈S2〉linear decreases with elongation ratio increasing for different functionality f. Thermodynamic properties such as average energy 〈U〉, free energy per bond 〈A′〉 and elastic force F are also investigated during the process of tensile elongation. In the meantime, scatting functions P(q) are calculated for star polymer chains with different functionality f. Additionally, we also discuss the influence of elongation ratio on scattering form factor. The impenetrability of the star cores is known to cause a discontinuity in the osmotic pressure showed through a peak in the scattering functions, and some different behaviors in the tensile process for uniform star chain are obtained. 相似文献
3.
In this paper, elastic behaviors of non-Gaussian polymethylene (PM) chains with chain length N=100 are investigated by rotational isomeric state model. Here the tetrahedral lattice of PM chain and the non-local interaction of Sutherland potential are adopted. In the metropolis movement of PM chain, a four-bond movement model is used. The average energy and average Helmholtz free energy with various elongation ratios λ are calculated by Monte Carlo simulation method. The average energy increases with elongation ratio λ and the average Helmholtz free energy decreases with elongation ratio λ. The elastic force f and the energy contribution to elastic force fu can be obtained from f=∂〈A〉/∂r and f=∂〈U〉/∂r. We find that the elastic force f increases with elongation ratio λ and the energy contribution fu decreases with elongation ratio λ, and fu is less than zero. The ratio fu/f is close to −0.21 for λ?1.25, and −0.04 to −0.35 for λ>1.25 at T=364 K. In our calculation, the rubber elasticity may be discussed in terms of the chemical structure of polymer chains. 相似文献
4.
Adhesion of immiscible polymers during two‐component injection moulding may be improved by transreactions of properly functionalised components. We performed MC simulations based on the three‐dimensional coarse‐grained bond fluctuation model (BFM) including a thermal interaction potential in with energy to characterise the behaviour of several selected types of chemical reactions, which are governed by activation energies of EA = 0, 1, 3 and 5 kBT. The consumption of reactive monomers for all the reactions in the time interval below the Rouse time τR exhibits a typical crossover from a kinetic‐controlled to a diffusion‐controlled behaviour and can be described by a bimolecular kinetic ansatz.
5.
Jin Chen 《European Polymer Journal》2004,40(11):2547-2554
The Monte Carlo (MC) method based on the rotational-isomeric-state (RIS) model is adopted in studying the elastic behavior of poly(ethylene terephthalate) (PET) chains in this paper. The mean-square end-to-end distance 〈R2〉, the mean-square radius of gyration 〈S2〉, and the ratio of 〈R2〉/〈S2〉 all increase with elongation ratio λ. The interior conformations are also investigated through calculating the a priori probability of rotational state in the process of tensile elongation. The radius of gyration tensor S is introduced here in order to measure the shape of PET chains, and increases with elongation ratio λ, however, some different behaviors are obtained for . Here , and are the eigenvalues of the radius of gyration tensor . The average energy per repeat unit 〈U〉 and the average free energy per repeat unit 〈A〉 are also calculated, and we find that the average energy decreases with elongation ratio λ, however, the average free energy per repeat unit increases with elongation ratio λ. Elastic force f, energy contribution to force fU, and entropy contribution to force fS are also investigated. Both elastic force f and entropy contribution to force fS increases with λ, however, energy contribution to force fU and the ratio fU/f decreases with λ. The ratio of fU/f is less than zero and almost independent of chain length. The results of these microscopic calculations may explain some macroscopic phenomena of rubber elasticity. 相似文献
6.
Sachin Shanbhag 《Journal of Polymer Science.Polymer Physics》2017,55(2):169-177
We perform Monte Carlo simulations of ring and linear polymers in linear matrices, and investigate the diffusivity of the probes. As the matrix chain length Nm is increased from 10 to 300 monomers, the diffusivity Dl of a linear probe (Nl = 300) decreases monotonically, while that of a ring probe Dr varies non‐monotonically, with a peak around . We perform additional simulations with a single probe molecule ( ) in a linear matrix ( ). The non‐monotonicity in Dr persists even after ring–ring interactions are eliminated. Topology dependent differences in the short‐time dynamics of the probes are observed; unlike linear probes, mean‐squared displacements of ring probes depend on Nm. Primitive path analysis suggests that the difference in dynamics originates from differences in entanglement structure. For linear probes, the degree of entanglement is independent of Nm. For ring probes, we observe two regimes: when Nm is small, the number of threadings decreases as Nm increases, eventually transitioning to a plateau. In the small Nm regime, the change in the degree of entanglement offsets the change in the mobility of the matrix chains, leading to a non‐monotonic variation in Dr. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 169–177 相似文献
7.
A brief review is given of applications of Monte Carlo simulations to study the dynamical properties of coarse-grained models of polymer melts, emphasizing the crossover from the Rouse model toward reptation, and the glass transition. The extent to which Monte Carlo algorithms can mimic the actual chain dynamics is critically examined, and the need for the use of coarse-grained rather than fully atomistic models for such simulations is explained. It is shown that various lattice and continuum models yield qualitatively similar results, and the behavior agrees with the findings of corresponding molecular dynamics simulations and experiments, where available. It is argued that these simulations significantly enhance our understanding of the theoretical concepts on the dynamics of dense macromolecular systems. © 1997 John Wiley & Sons, Inc. 相似文献
8.
R. B. Pandey B. L. Farmer 《Journal of polymer science. Part A, Polymer chemistry》2008,46(24):2696-2710
Exfoliation of a stack of sheets (a model for clay platelets) in a dynamic matrix of polymer chains is investigated by a computer simulation model. How the interplay between the thermodynamics (interaction-driven) and conformational (structural constraints) entropy affects the exfoliation of sheets is the subject of this study. A stack of four sheets with a small initial interlayer distance constitutes the layer on a discrete lattice. The layered platelets are immersed in a matrix represented by the mobile polymer chains which occupy a fraction (concentration) of the lattice sites. Both sheets and chains are modeled by the bond-fluctuation mechanism and execute their stochastic motion via Metropolis algorithm. An attractive and a repulsive interaction between the polymer matrix and platelets are considered. Exfoliation of the sheets is examined by varying the molecular weight of the polymer chains forming a dynamic network matrix with various degrees of entanglements. At low-molecular weight of the polymer, exfoliation is achieved with repulsive interaction and the exfoliation is suppressed with attractive matrix as sheets stick together via polymer mediated interaction introduced by intercalated polymer chains. Increasing the molecular weight of the polymer matrix suppresses the exfoliation of sheets primarily due to enhanced entanglement—at high-molecular weight (with the radius of gyration of polymer chains larger than the characteristic linear dimension of the platelets), the stacked (layered) morphology is arrested via entropic trapping and exfoliation ceases to occur. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2696–2710, 2008 相似文献
9.
Ahmed E. Ismail George Stephanopoulos Gregory C. Rutledge 《Journal of polymer science. Part A, Polymer chemistry》2005,43(8):897-910
We introduce a new method for coarse-graining polymer chains, based on the wavelet transform, a multiresolution data analysis technique. This method, which assigns a cluster of particles to a coarse-grained bead located at the center of mass of the cluster, reduces the complexity of the problem significantly by dividing the simulation into several stages, each with a small fraction of the number of beads in the overall chain. At each stage, we compute the distributions of coarse-grained internal coordinates as well as potential functions required for subsequent simulation stages. We show that, with this wavelet-accelerated Monte Carlo method, coarse-grained Gaussian and self-avoiding random walks can reproduce results obtained from atomistic simulations to a high degree of accuracy in orders of magnitude less time. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 897–910, 2005 相似文献
10.
Yu Shen 《European Polymer Journal》2006,42(12):3212-3220
In this paper, elastic behaviors of single polymer chains adsorbed on the rough surfaces with a substrate and some periodically tactic pillars are investigated by the pruned-enriched-Rosenbluth method (PERM). In our simulation, a single polymer chain is firstly adsorbed on the substrate and then pulled along the z-axis direction, which is vertical to the substrate. We investigate the chain size and shape of polymer chains, such as mean-square radii of gyration per bond 〈S2〉xy/N, 〈S2〉z/N and shape factor 〈δ∗〉 in order to show how the size and shape of adsorbed polymer chains change during the desorption process. Due to the occurrences of separation of the chains from the substrate, farther adsorption on the upper surfaces of pillars and complete separation from the whole rough surfaces in the elastic process, the changes of 〈S2〉xy/N, 〈S2〉z/N and 〈δ∗〉 during the process are complicated. On the other hand, some thermodynamic properties such as average energy per bond, average Helmholtz free energy per bond, elastic force f are investigated, and our aim is to study the elastic behaviors of polymer chains adsorbed on the rough surface during the elasticity process. Elastic force f has some plateaus during the desorption process for strong adsorption interaction. If there is no adsorption interaction, the chains can get away from the rough surfaces spontaneously. These investigations can provide some insights into the elastic behaviors of polymer chains adsorbed on the rough surface. 相似文献
11.
Summary: Monte Carlo simulation utilizing the bond fluctuation model in conjunction with single and configurational biased Monte Carlo moves is used to study the adsorption of diblock (A‐block‐B) and alternating (A‐alt‐B) copolymers at flat, chemically heterogeneous surfaces comprising C and D domains. The main objective of this work is to address the effect of the strength of attraction between the adsorbing surface domains, D, and the copolymer adsorbing segments, B, on the copolymer's ability to recognize the chemical pattern on the surface. The results of our simulations reveal that both block and alternating copolymers have the ability to recognize the surface motif and transcribe it into the bulk material. The extent to which diblock copolymers transfer the chemical pattern from the surface to the bulk is relatively unaffected when the attractive B‐D potential is increased beyond a certain critical value. This behavior stems from the brush‐like conformation adopted by the diblock copolymer at the substrate. In contrast to the diblock copolymer, the adsorption of the alternating copolymer is influenced by the strength of the attraction between the copolymer's adsorbing segments and the adsorbing domains on the surface. Since the B segments are distributed evenly along the backbone, the alternating copolymers are more likely to adopt conformations in which the whole chain is “zipped” to the surface. The resultant entropic frustration is then alleviated through an increased formation of loops with little change to their length. Such conformational changes endow the alternating copolymer with the ability to invert the substrate pattern as the distance away from the surface is increased.
12.
Elastic behaviors of single polymer chains adsorbed on the attractive surface are first investigated using Monte Carlo simulation method based on the bond fluctuation model. We investigate the chain size and shape of adsorbed chains, such as mean-square radius of gyration S2, mean-square bond length b2, shape factors sf(i) and delta*, and the orientation of chain segments P2, to illuminate how the shape of polymer chains changes during the process of tensile elongation. There are some special behaviors of the chain size and shape at the beginning of elongation, especially for strong attraction interaction. For example, mean fraction of adsorbed segments decreases abruptly in the region of small elongation ratio and then decreases slowly with increasing elongation ratio. In fact, the chain size and shape also changes abruptly for small elongation ratio with strong attraction interaction. Some thermodynamics properties are also investigated here. Average Helmholtz free energy increases fast for elongation ratio lambda<1.15, especially with strong attraction, and increases slowly for lambda>1.15. Similar behaviors are obtained for average energy per bond. Elastic force (f ) and energy contribution to force (f(U)) are also studied, and we find that elastic force decreases abruptly for lambda<1.15, and there is a minimum of elastic force for strong attraction interaction, then increases very slowly with increasing elongation ratio. However, there are different behaviors for weak attraction interaction. For energy contribution to force (f(U)), there is a maximum value for strong attraction interaction in the region of lambda<1.15. Some comparisons with the atomic force microscopy experiments are also made. These investigations may provide some insights into the elastic behaviors of adsorbed polymer chains. 相似文献
13.
Lin‐Xi Zhang Zhou‐Ting Jiang De‐Lu Zhao 《Journal of Polymer Science.Polymer Physics》2002,40(1):105-114
The rubberlike elastic behavior of bimodal poly(dimethylsiloxane) (PDMS) networks was investigated by the Monte Carlo simulation method and enumeration calculation method on the basis of the rotational‐isomeric‐state (RIS) model. These bimodal PDMS networks consist of short chains (chain length from 10 to 20) as well as long chains (chain length equal to 150). For long PDMS chains, through generating many PDMS conformations in the equilibrium state using the Monte Carlo simulation method we can obtain the average Helmholtz free energy and the average energy. For short PDMS chains with chain lengths from 10 to 20, as the total number of conformations is only from 6.56 × 103 to 3.87 × 108, we adopt the enumeration calculation method. The deformation is partitioned nonaffinely between the long and short chains, and this partitioning can be determined by requiring the free energy of the deformed network to be minimized. Chain dimensions and thermodynamic statistical properties of bimodal PDMS networks at various elongation ratios are discussed. We find that elastic force f increases with elongation ratio λ; the energy contribution fu to elastic force is significant, and the ratio of ranges from 0.15 to 0.36 at T = 343 K. In the meantime, elastic force f increases with the average energy 〈U〉. The energy change in the process of tensile elongation is taken over, which has been ignored in previous theories. Our calculations may provide some insights into the phenomena of rubberlike elasticity of bimodal networks. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 105–114, 2002 相似文献
14.
Emmanuel Karaiskos Ioannis A. Bitsanis Spiros H. Anastasiadis 《Journal of polymer science. Part A, Polymer chemistry》2009,47(24):2449-2461
Monte Carlo computer simulations of end-tethered chains grafted onto a hard wall have been performed. The chains were modeled as self-avoiding chains on a cubic lattice at athermal solvent conditions. The simulations spanned a wide range of chain lengths, N (100–1000, i.e., up to molecular weights of a few hundred thousands), and anchoring densities, σ (2 × 10−4 to 0.4), to properly chart the relevant parameter space. It is shown that the reduced surface coverage σ* = σπR is the most appropriate variable that quantitatively determines the mushroom, overlapping mushroom and brush regimes, where Rg is the radius of gyration of a free chain in solution. The simulation data are analyzed to determine the conformational characteristics and shape of the anchored chains and to compare them with the predictions of the analytical self consistent field theory. The strong stretching limit of the theoretical predictions is obtained only for σ* > 8. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47:2449–2461, 2009 相似文献
15.
Summary: Using the bond fluctuation model (BFM), simulations have been performed on molecular bottle brushes with two chemically different types of side chains. In the first part of this work, rigidity of the backbone is imposed. The influence of solvent quality and side chain length on the intramolecular phase separation of side chain material, leading to Janus cylinders, has been investigated and compared to theoretical predictions. In the second part of this work, the restriction of rigidity for the backbone is relaxed. In a poor solvent, the side chain material collapses into a globular state. Several globules containing each one type of side chain material are connected together by backbone material. When imposing different solvent conditions for both types of side chains, a bending of the backbone is found as predicted by theory and observed in very recent experiments.
16.
Sachin Shanbhag 《Journal of Polymer Science.Polymer Physics》2015,53(22):1611-1619
We perform high‐coordination three‐dimensional (3D) lattice simulations of a single chain of N monomers embedded in matrices of quenched chains, at different concentrations ρ, using pruned‐enriched Rosenbluth sampling. The partition function is well‐described by the expression, , where is a universal constant, and is the concentration dependent lattice connectivity constant. For sufficiently long chains, , we find that the radius of gyration R varies nonmonotonically with ρ; R decreases gradually from its unperturbed dimensions R0 until , after which it increases relatively rapidly due to repulsion between monomers. Motivated by the similarity in the shape of the curves, and results on Gaussian chains, we successfully superpose all the simulation data onto a single master curve. Finally, we test the relationship , suggested by a Flory‐type scaling model, where ρc is the critical percolation threshold, and is a universal constant. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1611–1619 相似文献
17.
Jos Molina‐Mateo Jos M. Meseguer‐Dueas Jos L. Gmez‐Ribelles 《Macromolecular theory and simulations》2006,15(1):32-39
Summary: The glass transition and physical aging processes of a polymeric material have been simulated using the bond fluctuation model. Two potentials that represent intra‐ and inter‐molecular interactions have been employed. Simulations of different thermal histories that include cooling from equilibrium have been performed. The evolution of the system and the structure attained at low temperature are analyzed as a function of the assumed weight of inter‐ and intra‐molecular potentials in the total energy of the system. A new way of characterizing the free volume of the system and its evolution with the temperature or time is proposed. It is based on the concept of dynamically accessible volume but modified in the sense of considering the probability of an empty site to be accessed according to a Metropolis criterion. The results obtained show that the thermal redefinition of the dynamically accessible volume, TDAV, offers a better representation of the real mobility of the polymeric systems. The use of information on the structure of the system coming from the pair‐correlation function and the molecular mobility in the glassy state characterized by the time evolution of TDAV allows to reach the conclusion that a combination of inter‐ and intra‐molecular potentials produces the vitrification of the polymer system on cooling.
18.
The elastic behavior of the polymer chain was investigated in a three-dimensional off-lattice model. We sample more than 109 conformations of each kind of polymer chain by using a Monte Carlo algorithm, then analyze them with the non-Gaussian theory of rubberlike elasticity, and end with a statistical study. Through observing the effect of the chain flexibility and the stretching ratio on the mean-square end-to-end distance, the average energy, the average Helmholtz free energy, the elastic force, the contribution of energy to the elastic force, and the entropy contribution to elastic force of the polymer chain, we find that a rigid polymer chain is much easier to stretch than a flexible polymer chain. Also, a rigid polymer chain will become difficult to stretch only at a quite high stretching ratio because of the effect of the entropy contribution. These results of our simulation calculation may explain some of the macroscopic phenomena of polymer and biomacromolecular elasticity. 相似文献
19.
<正>Elastic behavior of 4-branched star polymer chain with different chain length N adsorbed on attractive surface is investigated using steered molecular dynamics(SMD) simulation method based on the united-atom(UA) model for branched alkanes.The simulation is realized by pulling up the chain via a linear spring with a constant velocity v = 0.005 nm/ps.At the beginning,the chain lies extensionally on adsorbed surface and suffers continuous deformations during the tensile process.Statistical parameters as mean-square radii of gyration S~2_(xy),S~2_z,shape factor δ,describing the conformational changes,sectional density den which gives the states of the chain,and average surface attractive energy U_a,average total energy U,average force f probed by the spring,which characterize the thermodynamic properties, are calculated in the stimulant process.Remarkably,distinguishing from the case in linear chains that there only exists one long plateau in the curve of f,the force plateau in our study for star chains is multiple,denoting different steps of desorption,and this agrees well with the experimental results in essence.We find during the tensile process,there are three characteristic distances Z_c,Z_t and Z_0 from the attractive surface,and these values vary with N.When Z=Z_c,the chain is stripped from the surface,but due to the form of wall-monomer interaction,the surface retains weak influence on the chain till Z = Z_c.From Z=Z_t,parameters U_a,U and f respectively reach a stable value,while the shape and the size of the chain still need adjustments after Z_t till Z_0 to reach their equilibrium states.Specifically,for short chain of N= 41,Z_t and Z_0 are incorporated.These results may help us to deepen the knowledge about the elastic behavior of adsorbed star polymer chains. 相似文献
20.
Thephasebehaviorinmultiplecomponentpolymersconstitutesalongstandingactiveacademicsubjectbothinpolymerscienceandcondensedstatephysics.Itisespeciallysignificantinguidingthefabricationofpolymeralloys[1].Duringthelastdecadesmuchattentionhasbeenpaidtothecom… 相似文献